C. Boyer, Hongnian Huang, Christina W. Tønnesen-Friedman
{"title":"Sasaki几何中的横向Kähler完整度和s稳定性","authors":"C. Boyer, Hongnian Huang, Christina W. Tønnesen-Friedman","doi":"10.1515/coma-2020-0123","DOIUrl":null,"url":null,"abstract":"Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"336 - 353"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transverse Kähler holonomy in Sasaki Geometry and S-Stability\",\"authors\":\"C. Boyer, Hongnian Huang, Christina W. Tønnesen-Friedman\",\"doi\":\"10.1515/coma-2020-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"8 1\",\"pages\":\"336 - 353\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2020-0123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transverse Kähler holonomy in Sasaki Geometry and S-Stability
Abstract We study the transverse Kähler holonomy groups on Sasaki manifolds (M, S) and their stability properties under transverse holomorphic deformations of the characteristic foliation by the Reeb vector field. In particular, we prove that when the first Betti number b1(M) and the basic Hodge number h0,2B(S) vanish, then S is stable under deformations of the transverse Kähler flow. In addition we show that an irreducible transverse hyperkähler Sasakian structure is S-unstable, whereas, an irreducible transverse Calabi-Yau Sasakian structure is S-stable when dim M ≥ 7. Finally, we prove that the standard Sasaki join operation (transverse holonomy U(n1) × U(n2)) as well as the fiber join operation preserve S-stability.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.