{"title":"非等均椭圆曲线与超椭圆雅可比矩阵","authors":"Y. Zarhin","doi":"10.4310/mrl.2023.v30.n1.a11","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field of characteristic different from $2$, $\\bar{K}$ its algebraic closure. Let $n \\ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\\bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$. We also discuss the case when both polynomials are irreducible while their splitting fields are linearly disjoint. In particular, we prove that if $char(K)=0$, the Galois group of one of the polynomials is doubly transitive and the Galois group of the other is a cyclic group of order $n$, then $J(C_f)$ and $J(C_h)$ are not isogenous over $\\bar{K}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-isogenous elliptic curves and hyperelliptic jacobians\",\"authors\":\"Y. Zarhin\",\"doi\":\"10.4310/mrl.2023.v30.n1.a11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field of characteristic different from $2$, $\\\\bar{K}$ its algebraic closure. Let $n \\\\ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\\\\bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$. We also discuss the case when both polynomials are irreducible while their splitting fields are linearly disjoint. In particular, we prove that if $char(K)=0$, the Galois group of one of the polynomials is doubly transitive and the Galois group of the other is a cyclic group of order $n$, then $J(C_f)$ and $J(C_h)$ are not isogenous over $\\\\bar{K}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n1.a11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n1.a11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-isogenous elliptic curves and hyperelliptic jacobians
Let $K$ be a field of characteristic different from $2$, $\bar{K}$ its algebraic closure. Let $n \ge 3$ be an odd prime such that $2$ is a primitive root modulo $n$. Let $f(x)$ and $h(x)$ be degree $n$ polynomials with coefficients in $K$ and without repeated roots. Let us consider genus $(n-1)/2$ hyperelliptic curves $C_f: y^2=f(x)$ and $C_h: y^2=h(x)$, and their jacobians $J(C_f)$ and $J(C_h)$, which are $(n-1)/2$-dimensional abelian varieties defined over $K$. Suppose that one of the polynomials is irreducible and the other reducible. We prove that if $J(C_f)$ and $J(C_h)$ are isogenous over $\bar{K}$ then both jacobians are abelian varieties of CM type with multiplication by the field of $n$th roots of $1$. We also discuss the case when both polynomials are irreducible while their splitting fields are linearly disjoint. In particular, we prove that if $char(K)=0$, the Galois group of one of the polynomials is doubly transitive and the Galois group of the other is a cyclic group of order $n$, then $J(C_f)$ and $J(C_h)$ are not isogenous over $\bar{K}$.