T. Bobbe, Lenard Opeskin, Lisa-Marie Lüneburg, Helge Wanta, Joshwa Pohlmann, J. Krzywinski
{"title":"沟通设计:演示者如何展示技术?","authors":"T. Bobbe, Lenard Opeskin, Lisa-Marie Lüneburg, Helge Wanta, Joshwa Pohlmann, J. Krzywinski","doi":"10.1017/dsj.2023.1","DOIUrl":null,"url":null,"abstract":"Abstract The importance of inter- and transdisciplinary research for addressing today’s complex challenges has been increasingly recognised. This requires new forms of communication and interaction between researchers from different disciplines and nonacademic stakeholders. Demonstrators constitute a crucial communication tool in technology research and development and have the potential to leverage communication between different bodies of knowledge. However, there is little knowledge on how to design demonstrators. This research aims to understand how demonstrators from the fields Internet of Things and Robotics are designed to communicate technology. The goal is to increase the efficiency and effectiveness of demonstrator practice with readily implemented design knowledge and to advance theoretical knowledge in the field of communicating artefacts. We thematically analysed 28 demonstrator design cases, which led to a typology that assists in categorising and understanding 13 key design principles. The typology is built from three perspectives: First, in terms of the overall goal communication, second, in terms of visitor engagement goals (attraction, initial engagement, deep engagement) and third, in terms of resource-related goals (low effort in development and operation). With this typology, we have taken a significant step towards understanding demonstrator design principles for effective technology communication between different stakeholders.","PeriodicalId":54146,"journal":{"name":"Design Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design for communication: how do demonstrators demonstrate technology?\",\"authors\":\"T. Bobbe, Lenard Opeskin, Lisa-Marie Lüneburg, Helge Wanta, Joshwa Pohlmann, J. Krzywinski\",\"doi\":\"10.1017/dsj.2023.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The importance of inter- and transdisciplinary research for addressing today’s complex challenges has been increasingly recognised. This requires new forms of communication and interaction between researchers from different disciplines and nonacademic stakeholders. Demonstrators constitute a crucial communication tool in technology research and development and have the potential to leverage communication between different bodies of knowledge. However, there is little knowledge on how to design demonstrators. This research aims to understand how demonstrators from the fields Internet of Things and Robotics are designed to communicate technology. The goal is to increase the efficiency and effectiveness of demonstrator practice with readily implemented design knowledge and to advance theoretical knowledge in the field of communicating artefacts. We thematically analysed 28 demonstrator design cases, which led to a typology that assists in categorising and understanding 13 key design principles. The typology is built from three perspectives: First, in terms of the overall goal communication, second, in terms of visitor engagement goals (attraction, initial engagement, deep engagement) and third, in terms of resource-related goals (low effort in development and operation). With this typology, we have taken a significant step towards understanding demonstrator design principles for effective technology communication between different stakeholders.\",\"PeriodicalId\":54146,\"journal\":{\"name\":\"Design Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dsj.2023.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dsj.2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Design for communication: how do demonstrators demonstrate technology?
Abstract The importance of inter- and transdisciplinary research for addressing today’s complex challenges has been increasingly recognised. This requires new forms of communication and interaction between researchers from different disciplines and nonacademic stakeholders. Demonstrators constitute a crucial communication tool in technology research and development and have the potential to leverage communication between different bodies of knowledge. However, there is little knowledge on how to design demonstrators. This research aims to understand how demonstrators from the fields Internet of Things and Robotics are designed to communicate technology. The goal is to increase the efficiency and effectiveness of demonstrator practice with readily implemented design knowledge and to advance theoretical knowledge in the field of communicating artefacts. We thematically analysed 28 demonstrator design cases, which led to a typology that assists in categorising and understanding 13 key design principles. The typology is built from three perspectives: First, in terms of the overall goal communication, second, in terms of visitor engagement goals (attraction, initial engagement, deep engagement) and third, in terms of resource-related goals (low effort in development and operation). With this typology, we have taken a significant step towards understanding demonstrator design principles for effective technology communication between different stakeholders.