Naïve垃圾邮件检测的贝叶斯分类器模型

Q1 Decision Sciences
Shrawan Kumar, Kavita Gupta, Manya Gupta
{"title":"Naïve垃圾邮件检测的贝叶斯分类器模型","authors":"Shrawan Kumar,&nbsp;Kavita Gupta,&nbsp;Manya Gupta","doi":"10.1007/s40745-023-00479-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the machine learning algorithm Naive Bayes Classifier is applied to the Kaggle spam mails dataset to classify the emails in our inbox as spam or ham. The dataset is made up of two main attributes: type and text. The target variable \"Type\" has two factors: ham and spam. The text variable contains the text messages that will be classified as spam or ham. The results are obtained by employing two different Laplace values. It is up to the decision maker to select error tolerance in ham and spam messages derived from two different Laplace values. Computing software R is used for data analysis.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Naïve Bayes Classifier Model for Detecting Spam Mails\",\"authors\":\"Shrawan Kumar,&nbsp;Kavita Gupta,&nbsp;Manya Gupta\",\"doi\":\"10.1007/s40745-023-00479-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the machine learning algorithm Naive Bayes Classifier is applied to the Kaggle spam mails dataset to classify the emails in our inbox as spam or ham. The dataset is made up of two main attributes: type and text. The target variable \\\"Type\\\" has two factors: ham and spam. The text variable contains the text messages that will be classified as spam or ham. The results are obtained by employing two different Laplace values. It is up to the decision maker to select error tolerance in ham and spam messages derived from two different Laplace values. Computing software R is used for data analysis.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-023-00479-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00479-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文将机器学习算法 Naive Bayes 分类器应用于 Kaggle 垃圾邮件数据集,将收件箱中的邮件分为垃圾邮件和火腿肠邮件。数据集由两个主要属性组成:类型和文本。目标变量 "类型 "包含两个因子:垃圾邮件和火腿邮件。文本变量包含将被分类为垃圾邮件或火腿肠邮件的文本信息。结果是通过使用两种不同的拉普拉斯值得出的。决策者可以根据两种不同的拉普拉斯值来选择火腿和垃圾邮件的误差容限。计算软件 R 用于数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Naïve Bayes Classifier Model for Detecting Spam Mails

In this paper, the machine learning algorithm Naive Bayes Classifier is applied to the Kaggle spam mails dataset to classify the emails in our inbox as spam or ham. The dataset is made up of two main attributes: type and text. The target variable "Type" has two factors: ham and spam. The text variable contains the text messages that will be classified as spam or ham. The results are obtained by employing two different Laplace values. It is up to the decision maker to select error tolerance in ham and spam messages derived from two different Laplace values. Computing software R is used for data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Data Science
Annals of Data Science Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
6.50
自引率
0.00%
发文量
93
期刊介绍: Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed.     ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信