Ryland T. Giebelhaus, L. Biggs, S. Murch, Lauren A. E. Erland
{"title":"了解Wollemi pine(Wollemia nobilis)植物生长调控和进化的非靶向和靶向代谢组学","authors":"Ryland T. Giebelhaus, L. Biggs, S. Murch, Lauren A. E. Erland","doi":"10.1139/cjb-2023-0017","DOIUrl":null,"url":null,"abstract":"Wollemi Pine (Wollemia nobilis (Jones, Hill, Allen)) is a living fossil, known only through fossil records until its 1994 discovery in Australia. Wollemi Pine is closely related to Norfolk Island pine (Araucaria heterophylla (Salisb.) Franco) making it an interesting system to study metabolic evolution. We employed untargeted liquid chromatography mass spectrometry-based (LC-MS) metabolomics, with chemometrics, pathway analysis, and our novel plant growth regulator (PGR) putative identification tool (HormonomicsDB) to explore the metabolomes of both species. We identified PGR conjugates, and found cytokinin, zeatin, and brassinosteroid pathways to be overrepresented in Wollemi Pine tissues, suggesting these PGRs play an important role in it’s survival. Melatonin, a proposed ancient and stress-related PGR was not identified in untargeted analysis of either species. Based on our untargeted results we employed targeted LC-MS to quantify brassinolide and confirm the absence or presence of melatonin in Wollemi and Norfolk Island pine. Both species had similar concentrations of brassinolide. While Wollemi Pine had significantly higher melatonin levels than Norfolk Island. High levels of melatonin and brassinolide in Wollemin pine supports the hypothesis that these are ancient PGRs that conferred an evolutionary advantage in Wollemi, allowing it to persist.","PeriodicalId":9092,"journal":{"name":"Botany","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untargeted and targeted metabolomics to understand plant growth regulation and evolution in Wollemi pine (Wollemia nobilis)\",\"authors\":\"Ryland T. Giebelhaus, L. Biggs, S. Murch, Lauren A. E. Erland\",\"doi\":\"10.1139/cjb-2023-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wollemi Pine (Wollemia nobilis (Jones, Hill, Allen)) is a living fossil, known only through fossil records until its 1994 discovery in Australia. Wollemi Pine is closely related to Norfolk Island pine (Araucaria heterophylla (Salisb.) Franco) making it an interesting system to study metabolic evolution. We employed untargeted liquid chromatography mass spectrometry-based (LC-MS) metabolomics, with chemometrics, pathway analysis, and our novel plant growth regulator (PGR) putative identification tool (HormonomicsDB) to explore the metabolomes of both species. We identified PGR conjugates, and found cytokinin, zeatin, and brassinosteroid pathways to be overrepresented in Wollemi Pine tissues, suggesting these PGRs play an important role in it’s survival. Melatonin, a proposed ancient and stress-related PGR was not identified in untargeted analysis of either species. Based on our untargeted results we employed targeted LC-MS to quantify brassinolide and confirm the absence or presence of melatonin in Wollemi and Norfolk Island pine. Both species had similar concentrations of brassinolide. While Wollemi Pine had significantly higher melatonin levels than Norfolk Island. High levels of melatonin and brassinolide in Wollemin pine supports the hypothesis that these are ancient PGRs that conferred an evolutionary advantage in Wollemi, allowing it to persist.\",\"PeriodicalId\":9092,\"journal\":{\"name\":\"Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjb-2023-0017\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjb-2023-0017","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Untargeted and targeted metabolomics to understand plant growth regulation and evolution in Wollemi pine (Wollemia nobilis)
Wollemi Pine (Wollemia nobilis (Jones, Hill, Allen)) is a living fossil, known only through fossil records until its 1994 discovery in Australia. Wollemi Pine is closely related to Norfolk Island pine (Araucaria heterophylla (Salisb.) Franco) making it an interesting system to study metabolic evolution. We employed untargeted liquid chromatography mass spectrometry-based (LC-MS) metabolomics, with chemometrics, pathway analysis, and our novel plant growth regulator (PGR) putative identification tool (HormonomicsDB) to explore the metabolomes of both species. We identified PGR conjugates, and found cytokinin, zeatin, and brassinosteroid pathways to be overrepresented in Wollemi Pine tissues, suggesting these PGRs play an important role in it’s survival. Melatonin, a proposed ancient and stress-related PGR was not identified in untargeted analysis of either species. Based on our untargeted results we employed targeted LC-MS to quantify brassinolide and confirm the absence or presence of melatonin in Wollemi and Norfolk Island pine. Both species had similar concentrations of brassinolide. While Wollemi Pine had significantly higher melatonin levels than Norfolk Island. High levels of melatonin and brassinolide in Wollemin pine supports the hypothesis that these are ancient PGRs that conferred an evolutionary advantage in Wollemi, allowing it to persist.
期刊介绍:
Botany features comprehensive research articles and notes in all segments of plant sciences, including cell and molecular biology, ecology, mycology and plant-microbe interactions, phycology, physiology and biochemistry, structure and development, genetics, systematics, and phytogeography. It also publishes methods, commentary, and review articles on topics of current interest, contributed by internationally recognized scientists.