{"title":"昆虫冻害的分子机制综述","authors":"J. Rozsypal","doi":"10.14411/eje.2022.005","DOIUrl":null,"url":null,"abstract":"The present review discusses the molecular mechanisms of injury caused by low temperatures and/or freezing. The review is intended mainly for insect environmental physiologists who focus on the effects of low temperatures. The review successively discusses (1) the effects of low temperatures on the structure and function of macromolecules; (2) the effects of freezing on cells and macromolecules and (3) the mechanisms of damage during thawing and post-thaw. The review shows that injury primarily occurs at the molecular level in terms of damage to proteins, nucleic acids and biological membranes. The damage to macromolecular structures occurs as a result of the interaction between the effects of temperature, ice formation and resulting secondary effects such as osmotic stress, increased concentration of solutes, cellular freeze dehydration, disruption of ionic balance and oxidative stress. The present review attempts to identify gaps in our knowledge on the mechanisms of cold injury in organisms and proposes possible future directions that could contribute to fi lling the gaps. * This paper was contributed to a virtual special issue in memory of Ivo Hodek, a long-time editor of the European Journal of Entomology, who died on June 11, 2021, shortly after his ninetieth birthday.","PeriodicalId":11940,"journal":{"name":"European Journal of Entomology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cold and freezing injury in insects: An overview of molecular mechanisms\",\"authors\":\"J. Rozsypal\",\"doi\":\"10.14411/eje.2022.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present review discusses the molecular mechanisms of injury caused by low temperatures and/or freezing. The review is intended mainly for insect environmental physiologists who focus on the effects of low temperatures. The review successively discusses (1) the effects of low temperatures on the structure and function of macromolecules; (2) the effects of freezing on cells and macromolecules and (3) the mechanisms of damage during thawing and post-thaw. The review shows that injury primarily occurs at the molecular level in terms of damage to proteins, nucleic acids and biological membranes. The damage to macromolecular structures occurs as a result of the interaction between the effects of temperature, ice formation and resulting secondary effects such as osmotic stress, increased concentration of solutes, cellular freeze dehydration, disruption of ionic balance and oxidative stress. The present review attempts to identify gaps in our knowledge on the mechanisms of cold injury in organisms and proposes possible future directions that could contribute to fi lling the gaps. * This paper was contributed to a virtual special issue in memory of Ivo Hodek, a long-time editor of the European Journal of Entomology, who died on June 11, 2021, shortly after his ninetieth birthday.\",\"PeriodicalId\":11940,\"journal\":{\"name\":\"European Journal of Entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14411/eje.2022.005\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14411/eje.2022.005","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Cold and freezing injury in insects: An overview of molecular mechanisms
The present review discusses the molecular mechanisms of injury caused by low temperatures and/or freezing. The review is intended mainly for insect environmental physiologists who focus on the effects of low temperatures. The review successively discusses (1) the effects of low temperatures on the structure and function of macromolecules; (2) the effects of freezing on cells and macromolecules and (3) the mechanisms of damage during thawing and post-thaw. The review shows that injury primarily occurs at the molecular level in terms of damage to proteins, nucleic acids and biological membranes. The damage to macromolecular structures occurs as a result of the interaction between the effects of temperature, ice formation and resulting secondary effects such as osmotic stress, increased concentration of solutes, cellular freeze dehydration, disruption of ionic balance and oxidative stress. The present review attempts to identify gaps in our knowledge on the mechanisms of cold injury in organisms and proposes possible future directions that could contribute to fi lling the gaps. * This paper was contributed to a virtual special issue in memory of Ivo Hodek, a long-time editor of the European Journal of Entomology, who died on June 11, 2021, shortly after his ninetieth birthday.
期刊介绍:
EJE publishes original articles, reviews and points of view on all aspects of entomology. There are no restrictions on geographic region or taxon (Myriapoda, Chelicerata and terrestrial Crustacea included). Comprehensive studies and comparative/experimental approaches are preferred and the following types of manuscripts will usually be declined:
- Descriptive alpha-taxonomic studies unless the paper is markedly comprehensive/revisional taxonomically or regionally, and/or significantly improves our knowledge of comparative morphology, relationships or biogeography of the higher taxon concerned;
- Other purely or predominantly descriptive or enumerative papers [such as (ultra)structural and functional details, life tables, host records, distributional records and faunistic surveys, compiled checklists, etc.] unless they are exceptionally comprehensive or concern data or taxa of particular entomological (e.g., phylogenetic) interest;
- Papers evaluating the effect of chemicals (including pesticides, plant extracts, attractants or repellents, etc.), irradiation, pathogens, or dealing with other data of predominantly agro-economic impact without general entomological relevance.