{"title":"基于经验和分布的语义向量揭示了概念类别的可分离表示","authors":"Francesca Carota, Hamed Nili, Nikolaus Kriegeskorte, Friedemann Pulvermüller","doi":"10.1080/23273798.2023.2232481","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal populations code similar concepts by similar activity patterns across the human brain's semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping reflects distributional statistics, or experiential information grounded in sensorimotor and emotional knowledge. We asked whether integrating distributional and experiential data better distinguished conceptual categories than each method taken separately. We examined the similarity structure of fMRI patterns elicited by visually presented action- and object-related words using representational similarity analysis (RSA). We found that the distributional and experiential/integrative models respectively mapped the high-dimensional semantic space in left inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal cortex. Furthermore, results from model comparisons uncovered category-specific similarity patterns, as both distributional and experiential models matched the similarity patterns for action concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional) models matched the similarity patterns for object concepts in left fusiform and angular gyrus.</p>","PeriodicalId":48782,"journal":{"name":"Language Cognition and Neuroscience","volume":" ","pages":"1020-1044"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experientially-grounded and distributional semantic vectors uncover dissociable representations of conceptual categories.\",\"authors\":\"Francesca Carota, Hamed Nili, Nikolaus Kriegeskorte, Friedemann Pulvermüller\",\"doi\":\"10.1080/23273798.2023.2232481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal populations code similar concepts by similar activity patterns across the human brain's semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping reflects distributional statistics, or experiential information grounded in sensorimotor and emotional knowledge. We asked whether integrating distributional and experiential data better distinguished conceptual categories than each method taken separately. We examined the similarity structure of fMRI patterns elicited by visually presented action- and object-related words using representational similarity analysis (RSA). We found that the distributional and experiential/integrative models respectively mapped the high-dimensional semantic space in left inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal cortex. Furthermore, results from model comparisons uncovered category-specific similarity patterns, as both distributional and experiential models matched the similarity patterns for action concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional) models matched the similarity patterns for object concepts in left fusiform and angular gyrus.</p>\",\"PeriodicalId\":48782,\"journal\":{\"name\":\"Language Cognition and Neuroscience\",\"volume\":\" \",\"pages\":\"1020-1044\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Language Cognition and Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/23273798.2023.2232481\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Cognition and Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/23273798.2023.2232481","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Experientially-grounded and distributional semantic vectors uncover dissociable representations of conceptual categories.
Neuronal populations code similar concepts by similar activity patterns across the human brain's semantic networks. However, it is unclear to what extent such meaning-to-symbol mapping reflects distributional statistics, or experiential information grounded in sensorimotor and emotional knowledge. We asked whether integrating distributional and experiential data better distinguished conceptual categories than each method taken separately. We examined the similarity structure of fMRI patterns elicited by visually presented action- and object-related words using representational similarity analysis (RSA). We found that the distributional and experiential/integrative models respectively mapped the high-dimensional semantic space in left inferior frontal, anterior temporal, and in left precentral, posterior inferior/middle temporal cortex. Furthermore, results from model comparisons uncovered category-specific similarity patterns, as both distributional and experiential models matched the similarity patterns for action concepts in left fronto-temporal cortex, whilst the experiential/integrative (but not distributional) models matched the similarity patterns for object concepts in left fusiform and angular gyrus.
期刊介绍:
Language, Cognition and Neuroscience (formerly titled Language and Cognitive Processes) publishes high-quality papers taking an interdisciplinary approach to the study of brain and language, and promotes studies that integrate cognitive theoretical accounts of language and its neural bases. We publish both high quality, theoretically-motivated cognitive behavioural studies of language function, and papers which integrate cognitive theoretical accounts of language with its neurobiological foundations.
The study of language function from a cognitive neuroscience perspective has attracted intensive research interest over the last 20 years, and the development of neuroscience methodologies has significantly broadened the empirical scope of all language research. Both hemodynamic imaging and electrophysiological approaches provide new perspectives on the representation and processing of language, and place important constraints on the development of theoretical accounts of language function and its neurobiological context.