{"title":"利用在线新闻和异构网络进行投资和风险管理","authors":"Gary (Ming) Ang, E. Lim","doi":"10.1145/3532858","DOIUrl":null,"url":null,"abstract":"Stock price movements in financial markets are influenced by large volumes of news from diverse sources on the web, e.g., online news outlets, blogs, social media. Extracting useful information from online news for financial tasks, e.g., forecasting stock returns or risks, is, however, challenging due to the low signal-to-noise ratios of such online information. Assessing the relevance of each news article to the price movements of individual stocks is also difficult, even for human experts. In this article, we propose the Guided Global-Local Attention-based Multimodal Heterogeneous Network (GLAM) model, which comprises novel attention-based mechanisms for multimodal sequential and graph encoding, a guided learning strategy, and a multitask training objective. GLAM uses multimodal information, heterogeneous relationships between companies and leverages significant local responses of individual stock prices to online news to extract useful information from diverse global online news relevant to individual stocks for multiple forecasting tasks. Our extensive experiments with multiple datasets show that GLAM outperforms other state-of-the-art models on multiple forecasting tasks and investment and risk management application case-studies.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"17 1","pages":"1 - 24"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investment and Risk Management with Online News and Heterogeneous Networks\",\"authors\":\"Gary (Ming) Ang, E. Lim\",\"doi\":\"10.1145/3532858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock price movements in financial markets are influenced by large volumes of news from diverse sources on the web, e.g., online news outlets, blogs, social media. Extracting useful information from online news for financial tasks, e.g., forecasting stock returns or risks, is, however, challenging due to the low signal-to-noise ratios of such online information. Assessing the relevance of each news article to the price movements of individual stocks is also difficult, even for human experts. In this article, we propose the Guided Global-Local Attention-based Multimodal Heterogeneous Network (GLAM) model, which comprises novel attention-based mechanisms for multimodal sequential and graph encoding, a guided learning strategy, and a multitask training objective. GLAM uses multimodal information, heterogeneous relationships between companies and leverages significant local responses of individual stock prices to online news to extract useful information from diverse global online news relevant to individual stocks for multiple forecasting tasks. Our extensive experiments with multiple datasets show that GLAM outperforms other state-of-the-art models on multiple forecasting tasks and investment and risk management application case-studies.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\"17 1\",\"pages\":\"1 - 24\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3532858\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3532858","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Investment and Risk Management with Online News and Heterogeneous Networks
Stock price movements in financial markets are influenced by large volumes of news from diverse sources on the web, e.g., online news outlets, blogs, social media. Extracting useful information from online news for financial tasks, e.g., forecasting stock returns or risks, is, however, challenging due to the low signal-to-noise ratios of such online information. Assessing the relevance of each news article to the price movements of individual stocks is also difficult, even for human experts. In this article, we propose the Guided Global-Local Attention-based Multimodal Heterogeneous Network (GLAM) model, which comprises novel attention-based mechanisms for multimodal sequential and graph encoding, a guided learning strategy, and a multitask training objective. GLAM uses multimodal information, heterogeneous relationships between companies and leverages significant local responses of individual stock prices to online news to extract useful information from diverse global online news relevant to individual stocks for multiple forecasting tasks. Our extensive experiments with multiple datasets show that GLAM outperforms other state-of-the-art models on multiple forecasting tasks and investment and risk management application case-studies.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.