不同回归模型预测杉木厚度增长的比较

IF 0.3 Q4 FORESTRY
Andrej Ficko, Vasilije Trifković
{"title":"不同回归模型预测杉木厚度增长的比较","authors":"Andrej Ficko, Vasilije Trifković","doi":"10.20315/asetl.126.6","DOIUrl":null,"url":null,"abstract":"We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and three models with limited dependent variables: truncated regression, tobit regression and grouped data regression. The models may be used when dealing with truncated or censored variables, biased estimation of the increment due to censoring and rounding down, or when having multilevel data. The parametrization of the models was done using 21,013 fir trees on 4,405 plots in the period 1990–2014 in uneven-aged Dinaric fir-beech forests. All models showed a similar effect of tree diameter, stand basal area, basal area of larger trees, diameter structure diversity, altitude and slope. There were only minor differences in the regression coefficients and fit measures. The highest increment predictions were given by the tobit model. The mixed model fit the data best and, compared to the other models, predicted a slower decrease in the growth of large-diameter trees after growth culmination.","PeriodicalId":7188,"journal":{"name":"Acta Silvae et Ligni","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke\",\"authors\":\"Andrej Ficko, Vasilije Trifković\",\"doi\":\"10.20315/asetl.126.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and three models with limited dependent variables: truncated regression, tobit regression and grouped data regression. The models may be used when dealing with truncated or censored variables, biased estimation of the increment due to censoring and rounding down, or when having multilevel data. The parametrization of the models was done using 21,013 fir trees on 4,405 plots in the period 1990–2014 in uneven-aged Dinaric fir-beech forests. All models showed a similar effect of tree diameter, stand basal area, basal area of larger trees, diameter structure diversity, altitude and slope. There were only minor differences in the regression coefficients and fit measures. The highest increment predictions were given by the tobit model. The mixed model fit the data best and, compared to the other models, predicted a slower decrease in the growth of large-diameter trees after growth culmination.\",\"PeriodicalId\":7188,\"journal\":{\"name\":\"Acta Silvae et Ligni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Silvae et Ligni\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20315/asetl.126.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Silvae et Ligni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20315/asetl.126.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了7个可选的统计模型来模拟树木直径增量与永久样地的数据。除了多项式回归模型外,我们还提出了添加随机噪声的回归模型,混合线性模型,自然样条回归模型以及三种有限因变量模型:截断回归,tobit回归和分组数据回归。该模型可用于处理截断或删减的变量,由于删减和舍入而对增量进行有偏估计,或具有多层数据时。利用1990-2014年不均匀年龄的diaric冷杉山毛榉林4405个样地的21013棵冷杉树对模型进行了参数化。各模型对林分直径、林分基面积、大乔木基面积、林分直径、结构多样性、海拔和坡度的影响相似。回归系数和拟合测量值差异较小。tobit模型给出了最高的增量预测。与其他模型相比,混合模型拟合数据最好,并且预测生长高峰后大直径树的生长下降速度较慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
We present seven alternative statistical models for modelling tree diameter increment with data from permanent sampling plots. In addition to the polynomial regression model, we present a regression model with added random noise, a mixed linear model, regression with natural splines, and three models with limited dependent variables: truncated regression, tobit regression and grouped data regression. The models may be used when dealing with truncated or censored variables, biased estimation of the increment due to censoring and rounding down, or when having multilevel data. The parametrization of the models was done using 21,013 fir trees on 4,405 plots in the period 1990–2014 in uneven-aged Dinaric fir-beech forests. All models showed a similar effect of tree diameter, stand basal area, basal area of larger trees, diameter structure diversity, altitude and slope. There were only minor differences in the regression coefficients and fit measures. The highest increment predictions were given by the tobit model. The mixed model fit the data best and, compared to the other models, predicted a slower decrease in the growth of large-diameter trees after growth culmination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
2
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信