Riesz分数阶平流扩散方程的一种有效近似解

IF 1.1 Q2 MATHEMATICS, APPLIED
S. Mockary, A. Vahidi, E. Babolian
{"title":"Riesz分数阶平流扩散方程的一种有效近似解","authors":"S. Mockary, A. Vahidi, E. Babolian","doi":"10.22034/CMDE.2021.41690.1815","DOIUrl":null,"url":null,"abstract":"The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient approximate solution of Riesz fractional advection-diffusion equation\",\"authors\":\"S. Mockary, A. Vahidi, E. Babolian\",\"doi\":\"10.22034/CMDE.2021.41690.1815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.41690.1815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41690.1815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Riesz分数平流扩散是混沌动力学力学的结果。用数值方法求解这个方程是极其重要的。此外,在几个数学方程中使用切比雪夫多项式作为基础显示了指数收敛速度。对于这种方法,我们将状态空间的区间转换为区间[-1,1]*[-1,1]。然后,我们使用运算矩阵来离散分数算子。应用所得到的离散化,我们得到了一个线性方程组,从而得到了数值解。实例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient approximate solution of Riesz fractional advection-diffusion equation
The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信