{"title":"Riesz分数阶平流扩散方程的一种有效近似解","authors":"S. Mockary, A. Vahidi, E. Babolian","doi":"10.22034/CMDE.2021.41690.1815","DOIUrl":null,"url":null,"abstract":"The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient approximate solution of Riesz fractional advection-diffusion equation\",\"authors\":\"S. Mockary, A. Vahidi, E. Babolian\",\"doi\":\"10.22034/CMDE.2021.41690.1815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.41690.1815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41690.1815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An efficient approximate solution of Riesz fractional advection-diffusion equation
The Riesz fractional advection-diffusion is a result of the mechanics of chaotic dynamics. It's of preponderant importance to solve this equation numerically. Moreover, the utilization of Chebyshev polynomials as a base in several mathematical equations shows the exponential rate of convergence. To this approach, we transform the interval of state space into the interval [-1,1] * [-1,1] Then, we use the operational matrix to discretize fractional operators. Applying the resulting discretization, we obtain a linear system of equations, which leads to the numerical solution. Examples show the effectiveness of the method.