基于haar特征的CCTV图像中的枪支检测

Q4 Physics and Astronomy
Sami Ur, Fakhre Rahman, Alam, Wajid Ali
{"title":"基于haar特征的CCTV图像中的枪支检测","authors":"Sami Ur, Fakhre Rahman, Alam, Wajid Ali","doi":"10.53560/ppasa(59-4)749","DOIUrl":null,"url":null,"abstract":"Automated video-based surveillance is an important area of research to assist the security personnel to detect the incident of any abnormal events in the surroundings. The objective of this paper is to develop a framework for automatic gun detection using closed-circuit television (CCTV) images. The methodology presented in this paper involves the development of a framework for automatic gun detection using closed-circuit television (CCTV) images, with the aim of enhancing the surveillance of crime and improving human security. The proposed approach consists of a dataset of CCTV images containing instances of guns, as well as non-gun images for comparison. These images would be used to train the proposed algorithm to recognize and identify guns in future CCTV images. The proposed framework is designed for an indoor environment and uses Haar-like features for gun detection. The proposed system involves the installation of CCTV cameras in a suitable corner of an indoor environment for surveillance. The CCTV cameras capture the scene and the frames of the scene are compared with a predefined dataset for automatic gun detection. The proposed approach draws a bounding box and raises an alarm if it detects a gun in a frame extracted from a captured scene. This provides a visual indication of the presence of a gun, making it easier for relevant authorities to quickly identify and respond to the threat. The proposed system shows promising results in real-time applications and about 90% accuracy has been achieved.","PeriodicalId":36961,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: Part A","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gun Detection in CCTV Images using HAAR-Like Features\",\"authors\":\"Sami Ur, Fakhre Rahman, Alam, Wajid Ali\",\"doi\":\"10.53560/ppasa(59-4)749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated video-based surveillance is an important area of research to assist the security personnel to detect the incident of any abnormal events in the surroundings. The objective of this paper is to develop a framework for automatic gun detection using closed-circuit television (CCTV) images. The methodology presented in this paper involves the development of a framework for automatic gun detection using closed-circuit television (CCTV) images, with the aim of enhancing the surveillance of crime and improving human security. The proposed approach consists of a dataset of CCTV images containing instances of guns, as well as non-gun images for comparison. These images would be used to train the proposed algorithm to recognize and identify guns in future CCTV images. The proposed framework is designed for an indoor environment and uses Haar-like features for gun detection. The proposed system involves the installation of CCTV cameras in a suitable corner of an indoor environment for surveillance. The CCTV cameras capture the scene and the frames of the scene are compared with a predefined dataset for automatic gun detection. The proposed approach draws a bounding box and raises an alarm if it detects a gun in a frame extracted from a captured scene. This provides a visual indication of the presence of a gun, making it easier for relevant authorities to quickly identify and respond to the threat. The proposed system shows promising results in real-time applications and about 90% accuracy has been achieved.\",\"PeriodicalId\":36961,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(59-4)749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(59-4)749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

基于视频的自动化监控是一个重要的研究领域,它可以帮助安防人员发现周围任何异常事件的发生。本文的目的是开发一个利用闭路电视(CCTV)图像自动检测枪支的框架。本文提出的方法涉及开发一个使用闭路电视(CCTV)图像自动检测枪支的框架,目的是加强对犯罪的监视并改善人类安全。提出的方法包括包含枪支实例的CCTV图像数据集,以及用于比较的非枪支图像。这些图像将用于训练所提出的算法来识别和识别未来CCTV图像中的枪支。提出的框架是为室内环境设计的,并使用类似哈尔的特征进行枪支检测。拟议的系统包括在室内环境的适当角落安装闭路电视摄像机进行监视。闭路电视摄像机捕捉场景,并将场景帧与用于自动枪支检测的预定义数据集进行比较。该方法绘制一个边界框,并在从捕获的场景中提取的帧中检测到枪支时发出警报。这提供了枪支存在的视觉指示,使有关当局更容易快速识别和应对威胁。该系统在实时应用中取得了良好的效果,准确率达到90%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gun Detection in CCTV Images using HAAR-Like Features
Automated video-based surveillance is an important area of research to assist the security personnel to detect the incident of any abnormal events in the surroundings. The objective of this paper is to develop a framework for automatic gun detection using closed-circuit television (CCTV) images. The methodology presented in this paper involves the development of a framework for automatic gun detection using closed-circuit television (CCTV) images, with the aim of enhancing the surveillance of crime and improving human security. The proposed approach consists of a dataset of CCTV images containing instances of guns, as well as non-gun images for comparison. These images would be used to train the proposed algorithm to recognize and identify guns in future CCTV images. The proposed framework is designed for an indoor environment and uses Haar-like features for gun detection. The proposed system involves the installation of CCTV cameras in a suitable corner of an indoor environment for surveillance. The CCTV cameras capture the scene and the frames of the scene are compared with a predefined dataset for automatic gun detection. The proposed approach draws a bounding box and raises an alarm if it detects a gun in a frame extracted from a captured scene. This provides a visual indication of the presence of a gun, making it easier for relevant authorities to quickly identify and respond to the threat. The proposed system shows promising results in real-time applications and about 90% accuracy has been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Pakistan Academy of Sciences: Part A
Proceedings of the Pakistan Academy of Sciences: Part A Computer Science-Computer Science (all)
CiteScore
0.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信