SiCp/Al复合材料薄壁工件切削参数及加工路径的实验研究

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Yunan Liu, Shu-tao Huang, K. Jiao, Li-fu Xu
{"title":"SiCp/Al复合材料薄壁工件切削参数及加工路径的实验研究","authors":"Yunan Liu, Shu-tao Huang, K. Jiao, Li-fu Xu","doi":"10.1177/2633366X20942529","DOIUrl":null,"url":null,"abstract":"Thin-walled workpieces of silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites with outstanding properties have been widely applied in many fields, such as automobile, weapons, and aerospace. However, the thin-walled workpieces exhibit poor rigidity, large yield ratio, and easily deform under the cutting force and cutting heat during the machining process. Herein, in order to improve the processing efficiency and precision of higher volume fraction SiCp/Al composite thin-walled workpieces, the influence of different high-speed milling parameters and machining paths on the edge defects is analyzed. The results reveal that the cutting force initially increased and then decreased with the cutting speed. Besides, the cutting force steadily increased with radial cutting depth and feed per tooth, but the influence of feed per tooth is less than radial cutting depth. After up-milling cut-in and cut-out processing and down-milling cut-out processing, the cut-in end of the workpiece exhibited higher breakage and obvious edge defects. However, the workpiece edges remained intact after down-milling cut-in processing. In conclusion, a higher cutting speed, a smaller radial cutting depth, and moderate feed per tooth are required to decrease the cutting force during the milling of SiCp/Al composite thin-walled workpiece. Furthermore, down-milling cut-in processing mode can reduce the edge defects and improve the processing efficiency and precision of the workpiece.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20942529","citationCount":"2","resultStr":"{\"title\":\"Experimental study on cutting parameters and machining paths of SiCp/Al composite thin-walled workpieces\",\"authors\":\"Yunan Liu, Shu-tao Huang, K. Jiao, Li-fu Xu\",\"doi\":\"10.1177/2633366X20942529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin-walled workpieces of silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites with outstanding properties have been widely applied in many fields, such as automobile, weapons, and aerospace. However, the thin-walled workpieces exhibit poor rigidity, large yield ratio, and easily deform under the cutting force and cutting heat during the machining process. Herein, in order to improve the processing efficiency and precision of higher volume fraction SiCp/Al composite thin-walled workpieces, the influence of different high-speed milling parameters and machining paths on the edge defects is analyzed. The results reveal that the cutting force initially increased and then decreased with the cutting speed. Besides, the cutting force steadily increased with radial cutting depth and feed per tooth, but the influence of feed per tooth is less than radial cutting depth. After up-milling cut-in and cut-out processing and down-milling cut-out processing, the cut-in end of the workpiece exhibited higher breakage and obvious edge defects. However, the workpiece edges remained intact after down-milling cut-in processing. In conclusion, a higher cutting speed, a smaller radial cutting depth, and moderate feed per tooth are required to decrease the cutting force during the milling of SiCp/Al composite thin-walled workpiece. Furthermore, down-milling cut-in processing mode can reduce the edge defects and improve the processing efficiency and precision of the workpiece.\",\"PeriodicalId\":55551,\"journal\":{\"name\":\"Advanced Composites Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2633366X20942529\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2633366X20942529\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20942529","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2

摘要

碳化硅颗粒增强铝基(SiCp/Al)复合材料的薄壁件以其优异的性能在汽车、武器、航空航天等领域得到了广泛的应用。然而,薄壁工件在加工过程中刚性差,屈服比大,在切削力和切削热的作用下容易变形。为了提高高体积分数SiCp/Al复合薄壁件的加工效率和精度,分析了不同高速铣削参数和加工路径对边缘缺陷的影响。结果表明:随着切削速度的增加,切削力先增大后减小;切削力随径向切削深度和单齿进给量的增加而稳步增大,但单齿进给量的影响小于径向切削深度。上铣削切出加工和下铣削切出加工后,工件切入端破损程度较高,边缘缺陷明显。然而,工件边缘在下铣削切削加工后保持完整。综上所述,在SiCp/Al复合薄壁工件铣削过程中,需要提高切削速度、减小径向切削深度和适当的每齿进给量来减小切削力。下铣切入加工方式可以减少边缘缺陷,提高工件的加工效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on cutting parameters and machining paths of SiCp/Al composite thin-walled workpieces
Thin-walled workpieces of silicon carbide particle-reinforced aluminum matrix (SiCp/Al) composites with outstanding properties have been widely applied in many fields, such as automobile, weapons, and aerospace. However, the thin-walled workpieces exhibit poor rigidity, large yield ratio, and easily deform under the cutting force and cutting heat during the machining process. Herein, in order to improve the processing efficiency and precision of higher volume fraction SiCp/Al composite thin-walled workpieces, the influence of different high-speed milling parameters and machining paths on the edge defects is analyzed. The results reveal that the cutting force initially increased and then decreased with the cutting speed. Besides, the cutting force steadily increased with radial cutting depth and feed per tooth, but the influence of feed per tooth is less than radial cutting depth. After up-milling cut-in and cut-out processing and down-milling cut-out processing, the cut-in end of the workpiece exhibited higher breakage and obvious edge defects. However, the workpiece edges remained intact after down-milling cut-in processing. In conclusion, a higher cutting speed, a smaller radial cutting depth, and moderate feed per tooth are required to decrease the cutting force during the milling of SiCp/Al composite thin-walled workpiece. Furthermore, down-milling cut-in processing mode can reduce the edge defects and improve the processing efficiency and precision of the workpiece.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信