{"title":"Bochner $L^p$-空间和Köthe空间中的强共邻性","authors":"J. Jawdat","doi":"10.29020/nybg.ejpam.v16i3.4800","DOIUrl":null,"url":null,"abstract":"In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\\left(\\mu,G \\right)$ is strongly coproximinal in $L^{p}\\left(\\mu,X \\right), 1 \\leq p <\\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Coproximinality in Bochner $L^p$-Spaces and in Köthe Spaces\",\"authors\":\"J. Jawdat\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\\\\left(\\\\mu,G \\\\right)$ is strongly coproximinal in $L^{p}\\\\left(\\\\mu,X \\\\right), 1 \\\\leq p <\\\\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了Bochner $L^p$ -空间和Köthe Bochner函数空间$E(X)$中的强近性。我们研究了在Banach空间$X$的子空间$G$上,使$L^{p}\left(\mu,G \right)$在$L^{p}\left(\mu,X \right), 1 \leq p <\infty$上是强近邻的一些条件。另一方面,我们证明了如果$G$是$X$的可分子空间,则当且仅当$E(G)$是$E(X)$的强近邻空间,且$E$是严格单调的Köthe空间,则$G$是$X$的强近邻空间。这概括了文献中的一些结果。本文还介绍了这方面的一些其他结果。
Strong Coproximinality in Bochner $L^p$-Spaces and in Köthe Spaces
In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\left(\mu,G \right)$ is strongly coproximinal in $L^{p}\left(\mu,X \right), 1 \leq p <\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.