基于间接耦合法的复合坩埚结构参数优化及应力场数值模拟

IF 1.1 Q4 MECHANICS
Chunlei Jiang
{"title":"基于间接耦合法的复合坩埚结构参数优化及应力场数值模拟","authors":"Chunlei Jiang","doi":"10.1515/cls-2022-0198","DOIUrl":null,"url":null,"abstract":"Abstract The research starts with the treatment of the multiscale transmission problem and establishes the electromagnetic solidification transmission coupling mathematical model based on the indirect coupling method. It uses the three-dimensional magnetic field finite element theory to establish a three-dimensional crucible structure continuous casting model built on the electromagnetic solidification transmission coupling mathematical model. This model is used to optimize the parameters of the composite crucible structure and to simulate electromagnetic transmission and braking phenomena. The results show that the L-shaped static magnetic field has a more potent inhibition and a guidance effect on melt circulation. The braking effect of the actual magnetic field on the downward impact is worse. Under the influence of an L-shaped magnetic field, the flow velocity of the melt is better, and the flow state distribution is more smooth and uniform. The computational efficiency test results show that the conversion calculation time of the method designed in this study is 18.03 min. The total calculation time is 680.48 min, which is superior to traditional methods. It proves that this model can accurately analyze the magnetic field coupling problem and at the same time ensure the superiority of its computing efficiency.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of structural parameters and numerical simulation of stress field of composite crucible based on the indirect coupling method\",\"authors\":\"Chunlei Jiang\",\"doi\":\"10.1515/cls-2022-0198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The research starts with the treatment of the multiscale transmission problem and establishes the electromagnetic solidification transmission coupling mathematical model based on the indirect coupling method. It uses the three-dimensional magnetic field finite element theory to establish a three-dimensional crucible structure continuous casting model built on the electromagnetic solidification transmission coupling mathematical model. This model is used to optimize the parameters of the composite crucible structure and to simulate electromagnetic transmission and braking phenomena. The results show that the L-shaped static magnetic field has a more potent inhibition and a guidance effect on melt circulation. The braking effect of the actual magnetic field on the downward impact is worse. Under the influence of an L-shaped magnetic field, the flow velocity of the melt is better, and the flow state distribution is more smooth and uniform. The computational efficiency test results show that the conversion calculation time of the method designed in this study is 18.03 min. The total calculation time is 680.48 min, which is superior to traditional methods. It proves that this model can accurately analyze the magnetic field coupling problem and at the same time ensure the superiority of its computing efficiency.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要从多尺度传输问题的处理入手,建立了基于间接耦合方法的电磁凝固传输耦合数学模型。在电磁凝固传动耦合数学模型的基础上,利用三维磁场有限元理论建立了三维坩埚结构连铸模型。利用该模型对复合坩埚结构参数进行了优化,并对电磁传输和制动现象进行了模拟。结果表明,l型静磁场对熔体循环具有更强的抑制和引导作用。实际磁场对向下冲击的制动效果较差。在l型磁场的作用下,熔体的流动速度更好,流态分布更加光滑均匀。计算效率测试结果表明,本文设计方法的转换计算时间为18.03 min。总计算时间为680.48 min,优于传统方法。结果表明,该模型能够准确地分析磁场耦合问题,同时保证了其计算效率的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of structural parameters and numerical simulation of stress field of composite crucible based on the indirect coupling method
Abstract The research starts with the treatment of the multiscale transmission problem and establishes the electromagnetic solidification transmission coupling mathematical model based on the indirect coupling method. It uses the three-dimensional magnetic field finite element theory to establish a three-dimensional crucible structure continuous casting model built on the electromagnetic solidification transmission coupling mathematical model. This model is used to optimize the parameters of the composite crucible structure and to simulate electromagnetic transmission and braking phenomena. The results show that the L-shaped static magnetic field has a more potent inhibition and a guidance effect on melt circulation. The braking effect of the actual magnetic field on the downward impact is worse. Under the influence of an L-shaped magnetic field, the flow velocity of the melt is better, and the flow state distribution is more smooth and uniform. The computational efficiency test results show that the conversion calculation time of the method designed in this study is 18.03 min. The total calculation time is 680.48 min, which is superior to traditional methods. It proves that this model can accurately analyze the magnetic field coupling problem and at the same time ensure the superiority of its computing efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信