一类具有无限记忆的弱耗散二阶系统的稳定性结果

A. Al‐Mahdi, M. Al‐Gharabli
{"title":"一类具有无限记忆的弱耗散二阶系统的稳定性结果","authors":"A. Al‐Mahdi, M. Al‐Gharabli","doi":"10.30538/psrp-oma2022.0105","DOIUrl":null,"url":null,"abstract":"In this paper we consider the following abstract class of weakly dissipative second-order systems with infinite memory, \\(u''(t)+Au(t)-\\displaystyle\\int_{0}^{\\infty} g(s)A^\\alpha u(t-s)ds=0,~t>0,\\) and establish a general stability result with a very general assumption on the behavior of \\(g\\) at infinity; that is \\(g'(t) \\leq - \\xi(t) G \\left(g(t)\\right),~~t \\geq 0.\\) where \\(\\xi\\) and \\(G\\) are two functions satisfying some specific conditions. Our result generalizes and improves many earlier results in the literature. Moreover, we obtain our result with imposing a weaker restrictive assumption on the boundedness of initial data used in many earlier papers in the literature such as the one in [1,2,3,4,5]. The proof is based on the energy method together with convexity arguments.","PeriodicalId":52741,"journal":{"name":"Open Journal of Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability result for a class of weakly dissipative second-order systems with infinite memory\",\"authors\":\"A. Al‐Mahdi, M. Al‐Gharabli\",\"doi\":\"10.30538/psrp-oma2022.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the following abstract class of weakly dissipative second-order systems with infinite memory, \\\\(u''(t)+Au(t)-\\\\displaystyle\\\\int_{0}^{\\\\infty} g(s)A^\\\\alpha u(t-s)ds=0,~t>0,\\\\) and establish a general stability result with a very general assumption on the behavior of \\\\(g\\\\) at infinity; that is \\\\(g'(t) \\\\leq - \\\\xi(t) G \\\\left(g(t)\\\\right),~~t \\\\geq 0.\\\\) where \\\\(\\\\xi\\\\) and \\\\(G\\\\) are two functions satisfying some specific conditions. Our result generalizes and improves many earlier results in the literature. Moreover, we obtain our result with imposing a weaker restrictive assumption on the boundedness of initial data used in many earlier papers in the literature such as the one in [1,2,3,4,5]. The proof is based on the energy method together with convexity arguments.\",\"PeriodicalId\":52741,\"journal\":{\"name\":\"Open Journal of Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30538/psrp-oma2022.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-oma2022.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了以下抽象类具有无穷大记忆的弱耗散二阶系统,\(u’’(t)+Au(t)-\displaystyle\int_{0}^{infty}g(s)A^\alphau(t-s)ds=0,~t>0,\),并用一个关于\(g)在无穷大处行为的一般假设建立了一个一般稳定性结果;即\(g'(t)\leq-\neneneba xi(t)g\left(g(t)\ right),~~~t\geq0.\),其中\(\nenenebb xi \)和\(g\)是满足某些特定条件的两个函数。我们的结果推广和改进了文献中许多早期的结果。此外,我们通过对文献中许多早期论文(如[1,2,3,4,5]中的论文)中使用的初始数据的有界性施加较弱的限制性假设来获得我们的结果。该证明基于能量法和凸性论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability result for a class of weakly dissipative second-order systems with infinite memory
In this paper we consider the following abstract class of weakly dissipative second-order systems with infinite memory, \(u''(t)+Au(t)-\displaystyle\int_{0}^{\infty} g(s)A^\alpha u(t-s)ds=0,~t>0,\) and establish a general stability result with a very general assumption on the behavior of \(g\) at infinity; that is \(g'(t) \leq - \xi(t) G \left(g(t)\right),~~t \geq 0.\) where \(\xi\) and \(G\) are two functions satisfying some specific conditions. Our result generalizes and improves many earlier results in the literature. Moreover, we obtain our result with imposing a weaker restrictive assumption on the boundedness of initial data used in many earlier papers in the literature such as the one in [1,2,3,4,5]. The proof is based on the energy method together with convexity arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信