{"title":"基于蒙特卡罗模拟的同步闪电成像仪检测效率和虚警率反演精度评估","authors":"K. Virts, W. Koshak","doi":"10.1175/jtech-d-22-0050.1","DOIUrl":null,"url":null,"abstract":"\nPerformance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis.\nThis study presents a Monte Carlo simulation-based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360).\nGeographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16-44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Monte Carlo Simulations for Evaluating the Accuracy of Geostationary Lightning Mapper Detection Efficiency and False Alarm Rate Retrievals\",\"authors\":\"K. Virts, W. Koshak\",\"doi\":\"10.1175/jtech-d-22-0050.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPerformance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis.\\nThis study presents a Monte Carlo simulation-based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360).\\nGeographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16-44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.\",\"PeriodicalId\":15074,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-22-0050.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0050.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Monte Carlo Simulations for Evaluating the Accuracy of Geostationary Lightning Mapper Detection Efficiency and False Alarm Rate Retrievals
Performance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis.
This study presents a Monte Carlo simulation-based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360).
Geographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16-44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.