{"title":"Hilbert曲面方案上的重言丛的Segre类","authors":"C. Voisin","doi":"10.14231/AG-2019-010","DOIUrl":null,"url":null,"abstract":"We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on Hilbert schemes of $K3$ surfaces equipped with a line bundle. We then turn to the blow-up of $K3$ surface at one point and establish vanishing results for the corresponding top Segre classes in a certain range. This determines, at least theoretically, all top Segre classes of tautological bundles for any pair $(\\Sigma,H),\\,H\\in {\\rm Pic}\\,\\Sigma$.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Segre classes of tautological bundles on Hilbert schemes of surfaces\",\"authors\":\"C. Voisin\",\"doi\":\"10.14231/AG-2019-010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on Hilbert schemes of $K3$ surfaces equipped with a line bundle. We then turn to the blow-up of $K3$ surface at one point and establish vanishing results for the corresponding top Segre classes in a certain range. This determines, at least theoretically, all top Segre classes of tautological bundles for any pair $(\\\\Sigma,H),\\\\,H\\\\in {\\\\rm Pic}\\\\,\\\\Sigma$.\",\"PeriodicalId\":48564,\"journal\":{\"name\":\"Algebraic Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/AG-2019-010\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2019-010","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Segre classes of tautological bundles on Hilbert schemes of surfaces
We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande on top Segre classes of the tautological bundles on Hilbert schemes of $K3$ surfaces equipped with a line bundle. We then turn to the blow-up of $K3$ surface at one point and establish vanishing results for the corresponding top Segre classes in a certain range. This determines, at least theoretically, all top Segre classes of tautological bundles for any pair $(\Sigma,H),\,H\in {\rm Pic}\,\Sigma$.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.