{"title":"$p$进李扩展中超奇异阿贝尔变的Selmer群的弱Leopoldt猜想和Coranks","authors":"M. Lim","doi":"10.3836/tjm/1502179341","DOIUrl":null,"url":null,"abstract":"Let $A$ be an abelian variety defined over a number field $F$ with supersingular reduction at all primes of $F$ above $p$. We establish an equivalence between the weak Leopoldt conjecture and the expected value of the corank of the classical Selmer group of $A$ over a $p$-adic Lie extension (not neccesasily containing the cyclotomic $\\Zp$-extension). As an application, we obtain the exactness of the defining sequence of the Selmer group. In the event that the $p$-adic Lie extension is one-dimensional, we show that the dual Selmer group has no nontrivial finite submodules. Finally, we show that the aforementioned conclusions carry over to the Selmer group of a non-ordinary cuspidal modular form.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Weak Leopoldt Conjecture and Coranks of Selmer Groups of\\n Supersingular Abelian Varieties in $p$-adic Lie Extensions\",\"authors\":\"M. Lim\",\"doi\":\"10.3836/tjm/1502179341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be an abelian variety defined over a number field $F$ with supersingular reduction at all primes of $F$ above $p$. We establish an equivalence between the weak Leopoldt conjecture and the expected value of the corank of the classical Selmer group of $A$ over a $p$-adic Lie extension (not neccesasily containing the cyclotomic $\\\\Zp$-extension). As an application, we obtain the exactness of the defining sequence of the Selmer group. In the event that the $p$-adic Lie extension is one-dimensional, we show that the dual Selmer group has no nontrivial finite submodules. Finally, we show that the aforementioned conclusions carry over to the Selmer group of a non-ordinary cuspidal modular form.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3836/tjm/1502179341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Weak Leopoldt Conjecture and Coranks of Selmer Groups of
Supersingular Abelian Varieties in $p$-adic Lie Extensions
Let $A$ be an abelian variety defined over a number field $F$ with supersingular reduction at all primes of $F$ above $p$. We establish an equivalence between the weak Leopoldt conjecture and the expected value of the corank of the classical Selmer group of $A$ over a $p$-adic Lie extension (not neccesasily containing the cyclotomic $\Zp$-extension). As an application, we obtain the exactness of the defining sequence of the Selmer group. In the event that the $p$-adic Lie extension is one-dimensional, we show that the dual Selmer group has no nontrivial finite submodules. Finally, we show that the aforementioned conclusions carry over to the Selmer group of a non-ordinary cuspidal modular form.