不同盐度和光照水平下委内瑞拉卡氏甲藻的热生态位

IF 1.9 3区 环境科学与生态学 Q2 MARINE & FRESHWATER BIOLOGY
N. K. Vidyarathna, S. Ahn, P. Glibert
{"title":"不同盐度和光照水平下委内瑞拉卡氏甲藻的热生态位","authors":"N. K. Vidyarathna, S. Ahn, P. Glibert","doi":"10.1093/plankt/fbad019","DOIUrl":null,"url":null,"abstract":"\n The interactive effects of temperature (15–30°C), salinity (5–30) and light (low-100 and high-300 μmol photons m−2 s−1) on growth, thermal niche properties and cellular carbon (C) and nitrogen (N) of the toxic dinoflagellate, Karlodinium veneficum, were studied to understand its potential for change under future climate conditions in the eutrophic Chesapeake Bay. Cell growth was highest under conditions of 25–28°C, salinity 10–20 and high light, which represented the preferred physical niche for bloom formation in the present day. In the Chesapeake Bay, blooms generally occur at 25–29°C and salinity 10–14, while low-biomass occurrences have been found at salinities 15–29, consistent with the laboratory findings. High light increased the thermal sensitivity of K. veneficum and lowered the thermal optima for growth. Under conditions of low light, and salinity 10–20, cells exhibited the highest thermal optima for growth. The highest upper thermal maxima were observed at salinity 30, suggesting that cells in the lower estuary would be more thermally resistant than those in upper and mid-estuarine regions, and therefore these higher salinity regions may provide over-summering habitats for K. veneficum. Cellular C and N were highly varied at the preferred salinity and temperature niche and C:N ratios showed decreasing trends with temperature.","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal niche of the dinoflagellate Karlodinium veneficum across different salinity and light levels\",\"authors\":\"N. K. Vidyarathna, S. Ahn, P. Glibert\",\"doi\":\"10.1093/plankt/fbad019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The interactive effects of temperature (15–30°C), salinity (5–30) and light (low-100 and high-300 μmol photons m−2 s−1) on growth, thermal niche properties and cellular carbon (C) and nitrogen (N) of the toxic dinoflagellate, Karlodinium veneficum, were studied to understand its potential for change under future climate conditions in the eutrophic Chesapeake Bay. Cell growth was highest under conditions of 25–28°C, salinity 10–20 and high light, which represented the preferred physical niche for bloom formation in the present day. In the Chesapeake Bay, blooms generally occur at 25–29°C and salinity 10–14, while low-biomass occurrences have been found at salinities 15–29, consistent with the laboratory findings. High light increased the thermal sensitivity of K. veneficum and lowered the thermal optima for growth. Under conditions of low light, and salinity 10–20, cells exhibited the highest thermal optima for growth. The highest upper thermal maxima were observed at salinity 30, suggesting that cells in the lower estuary would be more thermally resistant than those in upper and mid-estuarine regions, and therefore these higher salinity regions may provide over-summering habitats for K. veneficum. Cellular C and N were highly varied at the preferred salinity and temperature niche and C:N ratios showed decreasing trends with temperature.\",\"PeriodicalId\":16800,\"journal\":{\"name\":\"Journal of Plankton Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plankton Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/plankt/fbad019\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbad019","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了温度(15 ~ 30℃)、盐度(5 ~ 30℃)和光照(低-100 μmol光子m−2 s−1和高-300 μmol光子m−2 s−1)对切萨皮克湾富营养化气候条件下有毒甲藻(Karlodinium veneficum)生长、热生态位特性和细胞碳(C)、氮(N)的交互影响。在25 ~ 28℃、盐度10 ~ 20、强光条件下,细胞生长最快,这是目前华花形成的首选物理生态位。在切萨皮克湾,水华通常发生在25-29°C和盐度10-14,而在盐度15-29的低生物量出现,与实验室发现一致。高光增强了褐霉的热敏性,降低了其生长的热适宜值。在低光照和盐度10-20的条件下,细胞表现出最高的生长热优。盐度为30时,上层热最大值最大,表明河口下游的细胞比河口上游和河口中部的细胞更耐热,因此这些较高盐度的区域可能为veneficum提供了过夏栖息地。细胞C和N在首选盐度和温度生态位变化较大,C:N随温度升高呈下降趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal niche of the dinoflagellate Karlodinium veneficum across different salinity and light levels
The interactive effects of temperature (15–30°C), salinity (5–30) and light (low-100 and high-300 μmol photons m−2 s−1) on growth, thermal niche properties and cellular carbon (C) and nitrogen (N) of the toxic dinoflagellate, Karlodinium veneficum, were studied to understand its potential for change under future climate conditions in the eutrophic Chesapeake Bay. Cell growth was highest under conditions of 25–28°C, salinity 10–20 and high light, which represented the preferred physical niche for bloom formation in the present day. In the Chesapeake Bay, blooms generally occur at 25–29°C and salinity 10–14, while low-biomass occurrences have been found at salinities 15–29, consistent with the laboratory findings. High light increased the thermal sensitivity of K. veneficum and lowered the thermal optima for growth. Under conditions of low light, and salinity 10–20, cells exhibited the highest thermal optima for growth. The highest upper thermal maxima were observed at salinity 30, suggesting that cells in the lower estuary would be more thermally resistant than those in upper and mid-estuarine regions, and therefore these higher salinity regions may provide over-summering habitats for K. veneficum. Cellular C and N were highly varied at the preferred salinity and temperature niche and C:N ratios showed decreasing trends with temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plankton Research
Journal of Plankton Research 生物-海洋学
CiteScore
3.50
自引率
9.50%
发文量
65
审稿时长
1 months
期刊介绍: Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信