Hilbert空间中的等参子流形与完整映射

IF 0.6 Q3 MATHEMATICS
N. Koike
{"title":"Hilbert空间中的等参子流形与完整映射","authors":"N. Koike","doi":"10.1215/00192082-10450471","DOIUrl":null,"url":null,"abstract":"Let $\\pi:P\\to B$ be a smooth $G$-bundle over a compact Riemannian manifold $B$ and $c$ a smooth loop in $B$ of constant seed $a(>0)$, where $G$ is compact semi-simple Lie group. In this paper, we prove that the holonomy map ${\\rm hol}_c:\\mathcal A_P^{H^s}\\to G$ is a homothetic submersion of coefficient $a$, where $s$ is a non-negative integer, $\\mathcal A_P^{H^s}$ is the Hilbert space of all $H^s$-connections of the bundle $P$. In particular, we prove that, if $s=0$, then ${\\rm hol}_c$ has minimal regularizable fibres. From this fact, we can derive that each component of the inverse image of any equifocal submanifold in $G$ by the holonomy map ${\\rm hol}_c:\\mathcal A_P^{H^0}\\to G$ is an isoparametric submanifold in $\\mathcal A_P^{H^0}$. As the result, we obtain a new systematic construction of isoparametric submanifolds in a Hilbert space.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Isoparametric submanifolds in Hilbert spaces and holonomy maps\",\"authors\":\"N. Koike\",\"doi\":\"10.1215/00192082-10450471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\pi:P\\\\to B$ be a smooth $G$-bundle over a compact Riemannian manifold $B$ and $c$ a smooth loop in $B$ of constant seed $a(>0)$, where $G$ is compact semi-simple Lie group. In this paper, we prove that the holonomy map ${\\\\rm hol}_c:\\\\mathcal A_P^{H^s}\\\\to G$ is a homothetic submersion of coefficient $a$, where $s$ is a non-negative integer, $\\\\mathcal A_P^{H^s}$ is the Hilbert space of all $H^s$-connections of the bundle $P$. In particular, we prove that, if $s=0$, then ${\\\\rm hol}_c$ has minimal regularizable fibres. From this fact, we can derive that each component of the inverse image of any equifocal submanifold in $G$ by the holonomy map ${\\\\rm hol}_c:\\\\mathcal A_P^{H^0}\\\\to G$ is an isoparametric submanifold in $\\\\mathcal A_P^{H^0}$. As the result, we obtain a new systematic construction of isoparametric submanifolds in a Hilbert space.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10450471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10450471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$\pi:P~B$是紧致黎曼流形$B$上的光滑$G$-丛,$c$是常种子$a(>0)$的$B$中的光滑环,其中$G$是紧致半单李群。在本文中,我们证明了到G$的全息映射${\rm-hol}_c:\mathical A_P^{H^s}\是系数$A$的同构淹没,其中$s$是非负整数,$\mathcal A_P^{H^s}$是丛$P$的所有$H^s$-连接的Hilbert空间。特别地,我们证明了,如果$s=0$,那么${\rm-hol}_c$具有最小的可正则纤维。由此,我们可以推导出$G$中任何等焦子流形的逆像的每个分量都是$\mathcal A_P^{H^ 0}$中的等参子流形。结果,我们得到了Hilbert空间中等参子流形的一个新的系统构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isoparametric submanifolds in Hilbert spaces and holonomy maps
Let $\pi:P\to B$ be a smooth $G$-bundle over a compact Riemannian manifold $B$ and $c$ a smooth loop in $B$ of constant seed $a(>0)$, where $G$ is compact semi-simple Lie group. In this paper, we prove that the holonomy map ${\rm hol}_c:\mathcal A_P^{H^s}\to G$ is a homothetic submersion of coefficient $a$, where $s$ is a non-negative integer, $\mathcal A_P^{H^s}$ is the Hilbert space of all $H^s$-connections of the bundle $P$. In particular, we prove that, if $s=0$, then ${\rm hol}_c$ has minimal regularizable fibres. From this fact, we can derive that each component of the inverse image of any equifocal submanifold in $G$ by the holonomy map ${\rm hol}_c:\mathcal A_P^{H^0}\to G$ is an isoparametric submanifold in $\mathcal A_P^{H^0}$. As the result, we obtain a new systematic construction of isoparametric submanifolds in a Hilbert space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信