与Lubin-Tate形式群相关的代数群的扭转和迭代扩展

Pub Date : 2021-05-24 DOI:10.2969/jmsj/87238723
Yoshiyasu Ozeki
{"title":"与Lubin-Tate形式群相关的代数群的扭转和迭代扩展","authors":"Yoshiyasu Ozeki","doi":"10.2969/jmsj/87238723","DOIUrl":null,"url":null,"abstract":"We show finiteness results on torsion points of commutative algebraic groups over a p-adic field K with values in various algebraic extensions L/K of infinite degree. We mainly study the following cases: (1) L is an abelian extension which is a splitting field of a crystalline character (such as a Lubin-Tate extension). (2) L is a certain iterate extension of K associated with Lubin-Tate formal groups, which is familiar with Kummer theory.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsion of algebraic groups and iterate extensions associated with Lubin–Tate formal groups\",\"authors\":\"Yoshiyasu Ozeki\",\"doi\":\"10.2969/jmsj/87238723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show finiteness results on torsion points of commutative algebraic groups over a p-adic field K with values in various algebraic extensions L/K of infinite degree. We mainly study the following cases: (1) L is an abelian extension which is a splitting field of a crystalline character (such as a Lubin-Tate extension). (2) L is a certain iterate extension of K associated with Lubin-Tate formal groups, which is familiar with Kummer theory.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/87238723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/87238723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了p进域K上具有无穷次的各种代数扩展L/K的交换代数群的扭转点的有限性结果。我们主要研究以下情况:(1)L是一个阿贝尔扩展,它是一个晶体性质的分裂场(如Lubin-Tate扩展)。(2) L是与Lubin-Tate形式群相关的K的一定迭代推广,熟悉Kummer理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Torsion of algebraic groups and iterate extensions associated with Lubin–Tate formal groups
We show finiteness results on torsion points of commutative algebraic groups over a p-adic field K with values in various algebraic extensions L/K of infinite degree. We mainly study the following cases: (1) L is an abelian extension which is a splitting field of a crystalline character (such as a Lubin-Tate extension). (2) L is a certain iterate extension of K associated with Lubin-Tate formal groups, which is familiar with Kummer theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信