{"title":"埃塞俄比亚西南部Kenech森林木本植物种群结构与更新状况","authors":"Sewale Balemlay, M. Siraj","doi":"10.1155/2021/6640285","DOIUrl":null,"url":null,"abstract":"Understanding the structural pattern and regeneration status of tree species is an important measure taken to assess the vegetation dynamics and their destruction factors species as well as management history and ecology of the forest. This study was conducted with the objective to assess the species diversity, structure, and regeneration status of woody species in Kenech natural forest, Ethiopia. Systematic random sampling method was employed as a sampling design for the collection of vegetation data. Accordingly, 40 plots of 20 m × 20 m were laid at every 100 m along four parallel transect lines following altitudinal gradient. Any woody species of trees and shrubs with the diameter at breast height (DBH) ≥2.5 cm was measured at 1.5 m from the ground. In each sample plots, all woody species seedling, sapling, and mature woody species were counted and recorded. A total of 80 plant species categorized into 67 genera and 28 families were recorded and identified, for description and analysis of vegetation structure. Structural analysis of the Kenech natural forest revealed a density of 840 stems/ha and a total basal area of 56.8 m2/ha. About 80.36% of the individuals are found in the first two classes (2.5–10 and 10–20 cm). The general pattern of DBH class distribution of woody species in the study area revealed an inverted J shape indicating the presence of a high density of trees in the lower DBH class than in the higher. The most dominant tree species relatively with the highest importance values recorded in the area were Pouteria adolfi-friedericii, Podocarpus falcatus, Celtis africana, Mimusops kummel, Pyschotria orophila, and Olea capensis subsp. macrocarpa. Forty-two species (64.61%) were represented by both seedling and sapling class, whereas 9 species (13.84%) were not regenerating.","PeriodicalId":14099,"journal":{"name":"International Journal of Forestry Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Population Structure and Regeneration Status of Woody Species in Kenech Forest, Southwest Ethiopia\",\"authors\":\"Sewale Balemlay, M. Siraj\",\"doi\":\"10.1155/2021/6640285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the structural pattern and regeneration status of tree species is an important measure taken to assess the vegetation dynamics and their destruction factors species as well as management history and ecology of the forest. This study was conducted with the objective to assess the species diversity, structure, and regeneration status of woody species in Kenech natural forest, Ethiopia. Systematic random sampling method was employed as a sampling design for the collection of vegetation data. Accordingly, 40 plots of 20 m × 20 m were laid at every 100 m along four parallel transect lines following altitudinal gradient. Any woody species of trees and shrubs with the diameter at breast height (DBH) ≥2.5 cm was measured at 1.5 m from the ground. In each sample plots, all woody species seedling, sapling, and mature woody species were counted and recorded. A total of 80 plant species categorized into 67 genera and 28 families were recorded and identified, for description and analysis of vegetation structure. Structural analysis of the Kenech natural forest revealed a density of 840 stems/ha and a total basal area of 56.8 m2/ha. About 80.36% of the individuals are found in the first two classes (2.5–10 and 10–20 cm). The general pattern of DBH class distribution of woody species in the study area revealed an inverted J shape indicating the presence of a high density of trees in the lower DBH class than in the higher. The most dominant tree species relatively with the highest importance values recorded in the area were Pouteria adolfi-friedericii, Podocarpus falcatus, Celtis africana, Mimusops kummel, Pyschotria orophila, and Olea capensis subsp. macrocarpa. Forty-two species (64.61%) were represented by both seedling and sapling class, whereas 9 species (13.84%) were not regenerating.\",\"PeriodicalId\":14099,\"journal\":{\"name\":\"International Journal of Forestry Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forestry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6640285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forestry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6640285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 12
摘要
了解树种的结构模式和再生状况是评估森林植被动态及其破坏因子物种、经营历史和生态的重要措施。本研究旨在评估埃塞俄比亚Kenech天然林中木本物种的物种多样性、结构和再生状况。采用系统随机抽样方法作为植被数据收集的抽样设计。因此 m × 20 每100米铺设m m,沿着海拔梯度的四条平行样线。胸径(DBH)≥2.5的任何木本树木和灌木 cm在1.5 距离地面m。在每个样地中,对所有木本植物的幼苗、幼树和成熟木本植物进行计数和记录。为了描述和分析植被结构,共记录和鉴定了28科67属80种植物。Kenech天然林的结构分析显示,密度为840茎/公顷,总基底面积为56.8 平方米/公顷。约80.36%的个体属于前两类(2.5–10和10–20 cm)。研究区木本物种DBH等级分布的总体模式显示出倒J形,表明低DBH等级的树木密度高于高DBH等级。相对而言,该地区记录的重要性值最高的最具优势的树种是Pouteria adolfi friedericii、Podocarpus falcatus、Celtis africana、Mimusops kummel、Pyschotria orophila和Olea capensis subsp。大果皮。42个物种(64.61%)同时属于幼苗和幼树类,而9个物种(13.84%)没有再生。
Population Structure and Regeneration Status of Woody Species in Kenech Forest, Southwest Ethiopia
Understanding the structural pattern and regeneration status of tree species is an important measure taken to assess the vegetation dynamics and their destruction factors species as well as management history and ecology of the forest. This study was conducted with the objective to assess the species diversity, structure, and regeneration status of woody species in Kenech natural forest, Ethiopia. Systematic random sampling method was employed as a sampling design for the collection of vegetation data. Accordingly, 40 plots of 20 m × 20 m were laid at every 100 m along four parallel transect lines following altitudinal gradient. Any woody species of trees and shrubs with the diameter at breast height (DBH) ≥2.5 cm was measured at 1.5 m from the ground. In each sample plots, all woody species seedling, sapling, and mature woody species were counted and recorded. A total of 80 plant species categorized into 67 genera and 28 families were recorded and identified, for description and analysis of vegetation structure. Structural analysis of the Kenech natural forest revealed a density of 840 stems/ha and a total basal area of 56.8 m2/ha. About 80.36% of the individuals are found in the first two classes (2.5–10 and 10–20 cm). The general pattern of DBH class distribution of woody species in the study area revealed an inverted J shape indicating the presence of a high density of trees in the lower DBH class than in the higher. The most dominant tree species relatively with the highest importance values recorded in the area were Pouteria adolfi-friedericii, Podocarpus falcatus, Celtis africana, Mimusops kummel, Pyschotria orophila, and Olea capensis subsp. macrocarpa. Forty-two species (64.61%) were represented by both seedling and sapling class, whereas 9 species (13.84%) were not regenerating.
期刊介绍:
International Journal of Forestry Research is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on the management and conservation of trees or forests. The journal will consider articles looking at areas such as tree biodiversity, sustainability, and habitat protection, as well as social and economic aspects of forestry. Other topics covered include landscape protection, productive capacity, and forest health.