水陆两栖步枪水下射击炮口冲击波实验研究

IF 0.8 4区 工程技术 Q3 MULTIDISCIPLINARY SCIENCES
Hung Nguyen Van, Dao Van Doan
{"title":"水陆两栖步枪水下射击炮口冲击波实验研究","authors":"Hung Nguyen Van, Dao Van Doan","doi":"10.14429/dsj.72.17367","DOIUrl":null,"url":null,"abstract":"Designed for amphibious combat forces, the amphibious rifle is a revolutionary new kind of weapon. This firearm's design and the determination of the effect of shooting on the shooter are both dependent on the development of the underwater muzzle blast. In this work, an experiment to evaluate the muzzle blast overpressure and gas bubble characteristics of an amphibious rifle when shooting underwater is performed in order to better understand the weapon's capabilities. This inquiry is focused on the 5.56 mm amphibious rifle with 5.56x45 mm underwater ammunition. The results of the experiments indicated that the Rayleigh-Plesset equation may be used to describe and predict the size of gas bubbles. The experimental data may be utilized to compute the law of change of overpressure based on the experimental results. Also, it is a very important base for studying, designing, making, and mastering weapon technology, which are all very important steps in the development of weapon technology","PeriodicalId":11043,"journal":{"name":"Defence Science Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Investigation of the Muzzle Blast for the Amphibious Rifles when Shooting Underwater\",\"authors\":\"Hung Nguyen Van, Dao Van Doan\",\"doi\":\"10.14429/dsj.72.17367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designed for amphibious combat forces, the amphibious rifle is a revolutionary new kind of weapon. This firearm's design and the determination of the effect of shooting on the shooter are both dependent on the development of the underwater muzzle blast. In this work, an experiment to evaluate the muzzle blast overpressure and gas bubble characteristics of an amphibious rifle when shooting underwater is performed in order to better understand the weapon's capabilities. This inquiry is focused on the 5.56 mm amphibious rifle with 5.56x45 mm underwater ammunition. The results of the experiments indicated that the Rayleigh-Plesset equation may be used to describe and predict the size of gas bubbles. The experimental data may be utilized to compute the law of change of overpressure based on the experimental results. Also, it is a very important base for studying, designing, making, and mastering weapon technology, which are all very important steps in the development of weapon technology\",\"PeriodicalId\":11043,\"journal\":{\"name\":\"Defence Science Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.72.17367\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.72.17367","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

为两栖作战部队设计的两栖步枪是一种革命性的新型武器。该枪的设计和射击效果的确定都取决于水下炮口爆炸的发展。为了更好地了解该武器的性能,对水陆两栖步枪在水下射击时的炮口爆炸超压和气泡特性进行了试验研究。这次调查的重点是5.56毫米水陆两用步枪和5.56 × 45毫米水下弹药。实验结果表明,Rayleigh-Plesset方程可以用来描述和预测气泡的大小。实验数据可用于根据实验结果计算超压变化规律。它是研究、设计、制造和掌握武器技术的重要基地,是武器技术发展的重要环节
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of the Muzzle Blast for the Amphibious Rifles when Shooting Underwater
Designed for amphibious combat forces, the amphibious rifle is a revolutionary new kind of weapon. This firearm's design and the determination of the effect of shooting on the shooter are both dependent on the development of the underwater muzzle blast. In this work, an experiment to evaluate the muzzle blast overpressure and gas bubble characteristics of an amphibious rifle when shooting underwater is performed in order to better understand the weapon's capabilities. This inquiry is focused on the 5.56 mm amphibious rifle with 5.56x45 mm underwater ammunition. The results of the experiments indicated that the Rayleigh-Plesset equation may be used to describe and predict the size of gas bubbles. The experimental data may be utilized to compute the law of change of overpressure based on the experimental results. Also, it is a very important base for studying, designing, making, and mastering weapon technology, which are all very important steps in the development of weapon technology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Science Journal
Defence Science Journal 综合性期刊-综合性期刊
CiteScore
1.80
自引率
11.10%
发文量
69
审稿时长
7.5 months
期刊介绍: Defence Science Journal is a peer-reviewed, multidisciplinary research journal in the area of defence science and technology. Journal feature recent progresses made in the field of defence/military support system and new findings/breakthroughs, etc. Major subject fields covered include: aeronautics, armaments, combat vehicles and engineering, biomedical sciences, computer sciences, electronics, material sciences, missiles, naval systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信