攻击图和子集破坏游戏

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Davide Catta, J. Leneutre, Vadim Malvone
{"title":"攻击图和子集破坏游戏","authors":"Davide Catta, J. Leneutre, Vadim Malvone","doi":"10.3233/IA-221080","DOIUrl":null,"url":null,"abstract":" We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player zero-sum reachability games between an Attacker and a Defender. This latter player can erase particular subsets of edges of the Attack Graph. To reason about such games we introduce a variant of Sabotage Modal Logic (that we call Subset Sabotage Modal Logic) in which one modality quantifies over non-empty subset of edges. We show that we can characterize the existence of winning Attacker strategies by formulas of Subset Sabotage Modal Logic.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"17 1","pages":"77-88"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attack Graphs & Subset Sabotage Games\",\"authors\":\"Davide Catta, J. Leneutre, Vadim Malvone\",\"doi\":\"10.3233/IA-221080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player zero-sum reachability games between an Attacker and a Defender. This latter player can erase particular subsets of edges of the Attack Graph. To reason about such games we introduce a variant of Sabotage Modal Logic (that we call Subset Sabotage Modal Logic) in which one modality quantifies over non-empty subset of edges. We show that we can characterize the existence of winning Attacker strategies by formulas of Subset Sabotage Modal Logic.\",\"PeriodicalId\":42055,\"journal\":{\"name\":\"Intelligenza Artificiale\",\"volume\":\"17 1\",\"pages\":\"77-88\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligenza Artificiale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/IA-221080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/IA-221080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑在攻击图上玩破坏游戏的扩展版本。这类游戏是攻击者和防御者之间的双人零和可达性游戏。后者可以擦除攻击图边缘的特定子集。为了推理这类博弈,我们引入了破坏模态逻辑的变体(我们称之为子集破坏模态逻辑),其中一个模态对非空边子集进行量化。利用子集破坏模态逻辑的公式证明了获胜攻击者策略的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attack Graphs & Subset Sabotage Games
 We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player zero-sum reachability games between an Attacker and a Defender. This latter player can erase particular subsets of edges of the Attack Graph. To reason about such games we introduce a variant of Sabotage Modal Logic (that we call Subset Sabotage Modal Logic) in which one modality quantifies over non-empty subset of edges. We show that we can characterize the existence of winning Attacker strategies by formulas of Subset Sabotage Modal Logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信