{"title":"一种基于深度监督混洗注意力修正卷积神经网络模型的癌症自动检测方案","authors":"K. T., V. J.","doi":"10.1080/00051144.2023.2196114","DOIUrl":null,"url":null,"abstract":"Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"64 1","pages":"518 - 528"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An automated cervical cancer detection scheme using deeply supervised shuffle attention modified convolutional neural network model\",\"authors\":\"K. T., V. J.\",\"doi\":\"10.1080/00051144.2023.2196114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"64 1\",\"pages\":\"518 - 528\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2196114\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2196114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An automated cervical cancer detection scheme using deeply supervised shuffle attention modified convolutional neural network model
Cervical malignant growth is the fourth most typical reason for disease demise in women around the world. In developing countries, women don’t approach sufficient screening methods because of the costly procedures to undergo examination regularly, scarce awareness and lack of access to the medical centre. Recently, deep learning-based radiomic methods have been introduced in differentiating vessel invasion from non-vessel invasion in Cervical Cancer (CC) by multi-parametric Magnetic Resonance Imaging (MRI). However, this model doesn’t produce sufficient results. In this work, the MRI images are initially pre-processed using bilateral filtering. After pre-processing, the image is segmented by modified U-Net model in order to identify the cancerous region. Extraction of deep semantic information from images by using residual blocks in the processes of contractions and expansions. The last layer of the contracting route uses tightly coupled convolutions in the second phase to speed up feature recycling and feature propagation. It was inferred from the observations that the proposed model was effective as a predictive tool for detecting vessel invasions in preoperative early stages of CC. Proposed model produces 94.00% detection accuracy which is better than the other existing methods.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.