Mastroianni算子和Gupta算子的收敛性和差分估计

IF 1 Q1 MATHEMATICS
Neha Deo, N. Deo
{"title":"Mastroianni算子和Gupta算子的收敛性和差分估计","authors":"Neha Deo, N. Deo","doi":"10.46793/kgjmat2302.259d","DOIUrl":null,"url":null,"abstract":"Gupta operators are a modified form of Srivastava-Gupta operators and we are concerned about investigating the difference of operators and we estimate the difference of Mastroianni operators with Gupta operators in terms of modulus of continuity of first order. We also study the weighted approximation of functions and obtain the rate of convergence with the help of the moduli of continuity as well as Peetre’s K-functional of Gupta operators.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and Difference Estimates Between Mastroianni and Gupta Operators\",\"authors\":\"Neha Deo, N. Deo\",\"doi\":\"10.46793/kgjmat2302.259d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gupta operators are a modified form of Srivastava-Gupta operators and we are concerned about investigating the difference of operators and we estimate the difference of Mastroianni operators with Gupta operators in terms of modulus of continuity of first order. We also study the weighted approximation of functions and obtain the rate of convergence with the help of the moduli of continuity as well as Peetre’s K-functional of Gupta operators.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2302.259d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2302.259d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Gupta算子是Srivastava-Gupta算子的一种改进形式,我们关注于研究算子的差异,并根据一阶连续模估计Mastroianni算子与Gupta运算符的差异。我们还研究了函数的加权逼近,并借助于Gupta算子的连续模和Peetre的K函数获得了收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and Difference Estimates Between Mastroianni and Gupta Operators
Gupta operators are a modified form of Srivastava-Gupta operators and we are concerned about investigating the difference of operators and we estimate the difference of Mastroianni operators with Gupta operators in terms of modulus of continuity of first order. We also study the weighted approximation of functions and obtain the rate of convergence with the help of the moduli of continuity as well as Peetre’s K-functional of Gupta operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信