折弯胸墙垂直壁面与破碎波相互作用的数值研究

IF 0.9 4区 工程技术 Q4 ENGINEERING, CIVIL
Songtao Chen, Weiwen Zhao, D. Wan
{"title":"折弯胸墙垂直壁面与破碎波相互作用的数值研究","authors":"Songtao Chen, Weiwen Zhao, D. Wan","doi":"10.17736/ijope.2023.ak53","DOIUrl":null,"url":null,"abstract":"This paper numerically investigates breaking wave interaction with a vertical wall attached with a recurved parapet in 1:8 model scale, as part of the ISOPE-2022 comparative study. The in-house CFD solver naoe-FOAM-SJTU based on the open source platform OpenFOAM is used to perform all simulations. For wave generation, a novel generating-absorbing boundary condition (GABC) is adopted to replace the time-consuming moving boundary wavemaker. A geometric volume-of-fluid (VOF) method based on piecewise-linear interface calculation (PLIC) is incorporated in the present numerical model to capture the sharp interface and improve the accuracy of the predicted impact pressure. The time history and frequency analysis of the wave elevation and pressure at each probe are compared with the experimental data. The comparison demonstrates that the present numerical model is able to predict the impact pressure with sufficient accuracy but gives less accurate results of wave elevation. Moreover, the evolutions of free surface, pressure, and vorticity distribution are further provided to achieve a better understanding of this complex wave-structure interaction issue as a good complement to the experiments.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study on Breaking Wave Interaction with Vertical Wall Attached with Recurved Parapet\",\"authors\":\"Songtao Chen, Weiwen Zhao, D. Wan\",\"doi\":\"10.17736/ijope.2023.ak53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper numerically investigates breaking wave interaction with a vertical wall attached with a recurved parapet in 1:8 model scale, as part of the ISOPE-2022 comparative study. The in-house CFD solver naoe-FOAM-SJTU based on the open source platform OpenFOAM is used to perform all simulations. For wave generation, a novel generating-absorbing boundary condition (GABC) is adopted to replace the time-consuming moving boundary wavemaker. A geometric volume-of-fluid (VOF) method based on piecewise-linear interface calculation (PLIC) is incorporated in the present numerical model to capture the sharp interface and improve the accuracy of the predicted impact pressure. The time history and frequency analysis of the wave elevation and pressure at each probe are compared with the experimental data. The comparison demonstrates that the present numerical model is able to predict the impact pressure with sufficient accuracy but gives less accurate results of wave elevation. Moreover, the evolutions of free surface, pressure, and vorticity distribution are further provided to achieve a better understanding of this complex wave-structure interaction issue as a good complement to the experiments.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2023.ak53\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2023.ak53","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

作为ISOPE-2022比较研究的一部分,本文以1:8模型比例率数值研究了破碎波与附有弯曲胸墙的垂直墙壁的相互作用。基于开源平台OpenFOAM的内部CFD求解器naoe-FOAM-SJTU进行了所有模拟。在产波方面,采用了一种新的产波吸收边界条件(GABC)来代替耗时的移动边界造波器。将基于分段线性界面计算(PLIC)的几何流体体积(VOF)方法引入到该数值模型中,以捕捉尖锐界面,提高预测冲击压力的准确性。并与实验数据进行了比较,得到了各探头处波浪高程和压力的时程和频率分析结果。对比表明,该数值模型能较好地预测冲击压力,但对波浪高程的预测精度较低。进一步提供了自由面、压力和涡度分布的演变,以更好地理解这一复杂的波-结构相互作用问题,作为对实验的良好补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study on Breaking Wave Interaction with Vertical Wall Attached with Recurved Parapet
This paper numerically investigates breaking wave interaction with a vertical wall attached with a recurved parapet in 1:8 model scale, as part of the ISOPE-2022 comparative study. The in-house CFD solver naoe-FOAM-SJTU based on the open source platform OpenFOAM is used to perform all simulations. For wave generation, a novel generating-absorbing boundary condition (GABC) is adopted to replace the time-consuming moving boundary wavemaker. A geometric volume-of-fluid (VOF) method based on piecewise-linear interface calculation (PLIC) is incorporated in the present numerical model to capture the sharp interface and improve the accuracy of the predicted impact pressure. The time history and frequency analysis of the wave elevation and pressure at each probe are compared with the experimental data. The comparison demonstrates that the present numerical model is able to predict the impact pressure with sufficient accuracy but gives less accurate results of wave elevation. Moreover, the evolutions of free surface, pressure, and vorticity distribution are further provided to achieve a better understanding of this complex wave-structure interaction issue as a good complement to the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Offshore and Polar Engineering
International Journal of Offshore and Polar Engineering ENGINEERING, CIVIL-ENGINEERING, OCEAN
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world. Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信