{"title":"高维成分数据的稳健协方差矩阵估计及其在销售数据分析中的应用","authors":"Danning Li, Arun Srinivasan, Qian Chen, Lingzhou Xue","doi":"10.1080/07350015.2022.2106990","DOIUrl":null,"url":null,"abstract":"<p><p>Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.</p>","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"1090-1100"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.\",\"authors\":\"Danning Li, Arun Srinivasan, Qian Chen, Lingzhou Xue\",\"doi\":\"10.1080/07350015.2022.2106990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.</p>\",\"PeriodicalId\":50247,\"journal\":{\"name\":\"Journal of Business & Economic Statistics\",\"volume\":\"41 1\",\"pages\":\"1090-1100\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business & Economic Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2106990\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2106990","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.
Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.
期刊介绍:
The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.