非奇异核caputo型卷积算子的随机应用

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
L. Beghin, M. Caputo
{"title":"非奇异核caputo型卷积算子的随机应用","authors":"L. Beghin, M. Caputo","doi":"10.1080/07362994.2021.2021091","DOIUrl":null,"url":null,"abstract":"Abstract We consider here convolution operators, in the Caputo sense, with nonsingular kernels. We prove that the solutions to some integro-differential equations with such operators (acting on the space variable) coincide with the transition densities of a particular class of Lévy subordinators (i.e. compound Poisson processes with non-negative jumps). We then extend these results to the case where the kernels of the operators have random parameters, with given distribution. This assumption allows greater flexibility in the choice of the kernel’s parameters and, consequently, of the jumps’ density function.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"377 - 393"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic applications of Caputo-type convolution operators with nonsingular kernels\",\"authors\":\"L. Beghin, M. Caputo\",\"doi\":\"10.1080/07362994.2021.2021091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider here convolution operators, in the Caputo sense, with nonsingular kernels. We prove that the solutions to some integro-differential equations with such operators (acting on the space variable) coincide with the transition densities of a particular class of Lévy subordinators (i.e. compound Poisson processes with non-negative jumps). We then extend these results to the case where the kernels of the operators have random parameters, with given distribution. This assumption allows greater flexibility in the choice of the kernel’s parameters and, consequently, of the jumps’ density function.\",\"PeriodicalId\":49474,\"journal\":{\"name\":\"Stochastic Analysis and Applications\",\"volume\":\"41 1\",\"pages\":\"377 - 393\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07362994.2021.2021091\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2021.2021091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们在这里考虑具有非奇异核的Caputo意义上的卷积算子。我们证明了一些具有这种算子(作用于空间变量)的积分微分方程的解与一类特定的Lévy亚子(即具有非负跳跃的复合泊松过程)的跃迁密度一致。然后,我们将这些结果扩展到算子的核具有随机参数、具有给定分布的情况。这一假设允许在内核参数的选择上有更大的灵活性,因此也允许在跳跃的密度函数的选择上更大的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic applications of Caputo-type convolution operators with nonsingular kernels
Abstract We consider here convolution operators, in the Caputo sense, with nonsingular kernels. We prove that the solutions to some integro-differential equations with such operators (acting on the space variable) coincide with the transition densities of a particular class of Lévy subordinators (i.e. compound Poisson processes with non-negative jumps). We then extend these results to the case where the kernels of the operators have random parameters, with given distribution. This assumption allows greater flexibility in the choice of the kernel’s parameters and, consequently, of the jumps’ density function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信