K1,r-Free分裂图中的哈密顿循环-二分法

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
P. Renjith, N. Sadagopan
{"title":"K1,r-Free分裂图中的哈密顿循环-二分法","authors":"P. Renjith, N. Sadagopan","doi":"10.1142/s0129054121500337","DOIUrl":null,"url":null,"abstract":"For an optimization problem known to be NP-Hard, the dichotomy study investigates the reduction instances to determine the line separating polynomial-time solvable vs NP-Hard instances (easy vs hard instances). In this paper, we investigate the well-studied Hamiltonian cycle problem (HCYCLE), and present an interesting dichotomy result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete on planar bipartite graphs with maximum degree [Formula: see text]. We use this result to show that HCYCLE is NP-complete for [Formula: see text]-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in [Formula: see text]-free and [Formula: see text]-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path problem and other variants of Hamiltonian cycle (path) problems.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian Cycle in K1,r-Free Split Graphs — A Dichotomy\",\"authors\":\"P. Renjith, N. Sadagopan\",\"doi\":\"10.1142/s0129054121500337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an optimization problem known to be NP-Hard, the dichotomy study investigates the reduction instances to determine the line separating polynomial-time solvable vs NP-Hard instances (easy vs hard instances). In this paper, we investigate the well-studied Hamiltonian cycle problem (HCYCLE), and present an interesting dichotomy result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete on planar bipartite graphs with maximum degree [Formula: see text]. We use this result to show that HCYCLE is NP-complete for [Formula: see text]-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in [Formula: see text]-free and [Formula: see text]-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path problem and other variants of Hamiltonian cycle (path) problems.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054121500337\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054121500337","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个已知为NP难的优化问题,二分法研究研究了归约实例,以确定线分离多项式时间可解实例与NP难实例(易实例与难实例)。在本文中,我们研究了研究得很好的哈密顿循环问题(HCYCLE),并在分裂图上给出了一个有趣的二分法结果。T.Akiyama等人(1980)已经证明了HCYCLE在具有最大度的平面二分图上是NP完全的[公式:见正文]。我们用这个结果证明了HCYCLE对于[公式:见正文]-自由分裂图是NP完全的。此外,我们在[公式:见文本]-自由和[公式:见文]-自由分裂图中提出了哈密顿循环的多项式时间算法。我们相信,本文给出的结构结果可以用来显示哈密顿路径问题和哈密顿循环(路径)问题的其他变体的类似二分法结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian Cycle in K1,r-Free Split Graphs — A Dichotomy
For an optimization problem known to be NP-Hard, the dichotomy study investigates the reduction instances to determine the line separating polynomial-time solvable vs NP-Hard instances (easy vs hard instances). In this paper, we investigate the well-studied Hamiltonian cycle problem (HCYCLE), and present an interesting dichotomy result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete on planar bipartite graphs with maximum degree [Formula: see text]. We use this result to show that HCYCLE is NP-complete for [Formula: see text]-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in [Formula: see text]-free and [Formula: see text]-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path problem and other variants of Hamiltonian cycle (path) problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science 工程技术-计算机:理论方法
CiteScore
1.60
自引率
12.50%
发文量
63
审稿时长
3 months
期刊介绍: The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include: - Algebraic theory of computing and formal systems - Algorithm and system implementation issues - Approximation, probabilistic, and randomized algorithms - Automata and formal languages - Automated deduction - Combinatorics and graph theory - Complexity theory - Computational biology and bioinformatics - Cryptography - Database theory - Data structures - Design and analysis of algorithms - DNA computing - Foundations of computer security - Foundations of high-performance computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信