循环加热和傅立叶变换对CFRP的主动热成像检测——与闪光加热法的比较

IF 1.8 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
M. Ishikawa, Takuto Miura, H. Nishino, T. Kato, Tetsuya Otsuki
{"title":"循环加热和傅立叶变换对CFRP的主动热成像检测——与闪光加热法的比较","authors":"M. Ishikawa, Takuto Miura, H. Nishino, T. Kato, Tetsuya Otsuki","doi":"10.1080/09243046.2022.2141294","DOIUrl":null,"url":null,"abstract":"Active thermography nondestructive inspection using cyclic heating and phase images obtained via the Fourier transform is performed for carbon fiber-reinforced plastic (CFRP) specimens, and the defect detection capability of this method is compared with that of the conventional thermography method using flash heating. The experimental results indicate that the defect detection capability is significantly improved when the frequency of the phase image is equal to the cyclic heating frequency. Compared with the flash heating method, a higher signal-to-noise ratio is observed in the phase images obtained via the cyclic heating method, although the temperature increase of the inspection object during heating is lower than that observed during flash heating. These results suggest that the proposed inspection method is effective for CFRPs and other resin-based materials.","PeriodicalId":7291,"journal":{"name":"Advanced Composite Materials","volume":"32 1","pages":"702 - 714"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active thermography inspection of CFRP using cyclic heating and Fourier transform—comparison with flash heating method\",\"authors\":\"M. Ishikawa, Takuto Miura, H. Nishino, T. Kato, Tetsuya Otsuki\",\"doi\":\"10.1080/09243046.2022.2141294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active thermography nondestructive inspection using cyclic heating and phase images obtained via the Fourier transform is performed for carbon fiber-reinforced plastic (CFRP) specimens, and the defect detection capability of this method is compared with that of the conventional thermography method using flash heating. The experimental results indicate that the defect detection capability is significantly improved when the frequency of the phase image is equal to the cyclic heating frequency. Compared with the flash heating method, a higher signal-to-noise ratio is observed in the phase images obtained via the cyclic heating method, although the temperature increase of the inspection object during heating is lower than that observed during flash heating. These results suggest that the proposed inspection method is effective for CFRPs and other resin-based materials.\",\"PeriodicalId\":7291,\"journal\":{\"name\":\"Advanced Composite Materials\",\"volume\":\"32 1\",\"pages\":\"702 - 714\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09243046.2022.2141294\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09243046.2022.2141294","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

摘要

利用循环加热和傅立叶变换获得的相位图像对碳纤维增强塑料(CFRP)试样进行了主动热成像无损检测,并将该方法的缺陷检测能力与传统的闪速加热热成像方法进行了比较。实验结果表明,当相位图像的频率与循环加热频率相等时,缺陷检测能力显著提高。与闪速加热相比,循环加热获得的相位图像信噪比更高,但加热过程中被测物体的温升低于闪速加热。这些结果表明,所提出的检测方法对cfrp和其他树脂基材料是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active thermography inspection of CFRP using cyclic heating and Fourier transform—comparison with flash heating method
Active thermography nondestructive inspection using cyclic heating and phase images obtained via the Fourier transform is performed for carbon fiber-reinforced plastic (CFRP) specimens, and the defect detection capability of this method is compared with that of the conventional thermography method using flash heating. The experimental results indicate that the defect detection capability is significantly improved when the frequency of the phase image is equal to the cyclic heating frequency. Compared with the flash heating method, a higher signal-to-noise ratio is observed in the phase images obtained via the cyclic heating method, although the temperature increase of the inspection object during heating is lower than that observed during flash heating. These results suggest that the proposed inspection method is effective for CFRPs and other resin-based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Composite Materials
Advanced Composite Materials 工程技术-材料科学:复合
CiteScore
5.00
自引率
20.70%
发文量
54
审稿时长
3 months
期刊介绍: "Advanced Composite Materials (ACM), a bi-monthly publication of the Japan Society for Composite Materials and the Korean Society for Composite Materials, provides an international forum for researchers, manufacturers and designers who are working in the field of composite materials and their structures. Issues contain articles on all aspects of current scientific and technological progress in this interdisciplinary field. The topics of interest are physical, chemical, mechanical and other properties of advanced composites as well as their constituent materials; experimental and theoretical studies relating microscopic to macroscopic behavior; testing and evaluation with emphasis on environmental effects and reliability; novel techniques of fabricating various types of composites and of forming structural components utilizing these materials; design and analysis for specific applications. Advanced Composite Materials publishes refereed original research papers, review papers, technical papers and short notes as well as some translated papers originally published in the Journal of the Japan Society for Composite Materials. Issues also contain news items such as information on new materials and their processing."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信