极度和消失循环

Pub Date : 2022-09-17 DOI:10.1112/topo.12260
Dirk Siersma, Mihai Tibăr
{"title":"极度和消失循环","authors":"Dirk Siersma,&nbsp;Mihai Tibăr","doi":"10.1112/topo.12260","DOIUrl":null,"url":null,"abstract":"<p>We prove that the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which quantify local vanishing cycles of two different types. This yields lower bounds for the polar degree of any singular projective hypersurface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polar degree and vanishing cycles\",\"authors\":\"Dirk Siersma,&nbsp;Mihai Tibăr\",\"doi\":\"10.1112/topo.12260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which quantify local vanishing cycles of two different types. This yields lower bounds for the polar degree of any singular projective hypersurface.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

证明了任意奇异射影超曲面的极度可以分解为量化两种不同类型的局部消失环的非负数的和。这就得到了任何奇异射影超曲面极度的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Polar degree and vanishing cycles

We prove that the polar degree of an arbitrarily singular projective hypersurface can be decomposed as a sum of non-negative numbers which quantify local vanishing cycles of two different types. This yields lower bounds for the polar degree of any singular projective hypersurface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信