线性响应时变密度泛函理论在平面波基础上的解析核梯度的有效实现

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Jie Liu, Wei Hu, Jinlong Yang
{"title":"线性响应时变密度泛函理论在平面波基础上的解析核梯度的有效实现","authors":"Jie Liu, Wei Hu, Jinlong Yang","doi":"10.1088/2516-1075/accb23","DOIUrl":null,"url":null,"abstract":"We present an efficient implementation of the analytical nuclear gradient of linear-response time-dependent density functional theory (LR-TDDFT) with the frozen core approximation (FCA). This implementation is realized based on the Hutter’s formalism and the plane wave pseudopotential method. Numerical results demonstrate that the LR-TDDFT/FCA method using a small subset of Kohn–Sham occupied orbitals are accurate enough to reproduce the LR-TDDFT results. Here, the FCA remarkably reduces the computational cost in solving the LR-TDDFT eigenvalue equation. Another challenge in the calculations of analytical nuclear gradients for LR-TDDFT is the solution of the Z-vector equation, for which the Davidson algorithm is a popular choice. While, for large systems the standard Davidson algorithm exhibits a low convergence rate. In order to overcome this problem, we generalize the two-level Davidson algorithm to solve linear equation problems. A more stable performance is achieved with this new algorithm. Our method should encourage further studies of excited-state properties with LR-TDDFT in the plane wave basis.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient implementation of analytical nuclear gradients for linear-response time-dependent density functional theory in the plane wave basis\",\"authors\":\"Jie Liu, Wei Hu, Jinlong Yang\",\"doi\":\"10.1088/2516-1075/accb23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient implementation of the analytical nuclear gradient of linear-response time-dependent density functional theory (LR-TDDFT) with the frozen core approximation (FCA). This implementation is realized based on the Hutter’s formalism and the plane wave pseudopotential method. Numerical results demonstrate that the LR-TDDFT/FCA method using a small subset of Kohn–Sham occupied orbitals are accurate enough to reproduce the LR-TDDFT results. Here, the FCA remarkably reduces the computational cost in solving the LR-TDDFT eigenvalue equation. Another challenge in the calculations of analytical nuclear gradients for LR-TDDFT is the solution of the Z-vector equation, for which the Davidson algorithm is a popular choice. While, for large systems the standard Davidson algorithm exhibits a low convergence rate. In order to overcome this problem, we generalize the two-level Davidson algorithm to solve linear equation problems. A more stable performance is achieved with this new algorithm. Our method should encourage further studies of excited-state properties with LR-TDDFT in the plane wave basis.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/accb23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/accb23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种利用冻结核近似(FCA)有效实现线性响应时间相关密度泛函理论(LR-TDDFT)的解析核梯度的方法。该实现是基于Hutter形式和平面波赝势方法实现的。数值结果表明,使用Kohn–Sham占据轨道的子集的LR-TDDFT/FCA方法足够准确,可以重现LR-TDDFT结果。在这里,FCA显著降低了求解LR-TDDFT特征值方程的计算成本。LR-TDDFT分析核梯度计算中的另一个挑战是Z矢量方程的求解,Davidson算法是该方程的一个流行选择。而对于大型系统,标准Davidson算法表现出较低的收敛速度。为了克服这一问题,我们推广了求解线性方程问题的两级Davidson算法。这种新算法实现了更稳定的性能。我们的方法应该鼓励在平面波基上用LR-TDDFT进一步研究激发态性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient implementation of analytical nuclear gradients for linear-response time-dependent density functional theory in the plane wave basis
We present an efficient implementation of the analytical nuclear gradient of linear-response time-dependent density functional theory (LR-TDDFT) with the frozen core approximation (FCA). This implementation is realized based on the Hutter’s formalism and the plane wave pseudopotential method. Numerical results demonstrate that the LR-TDDFT/FCA method using a small subset of Kohn–Sham occupied orbitals are accurate enough to reproduce the LR-TDDFT results. Here, the FCA remarkably reduces the computational cost in solving the LR-TDDFT eigenvalue equation. Another challenge in the calculations of analytical nuclear gradients for LR-TDDFT is the solution of the Z-vector equation, for which the Davidson algorithm is a popular choice. While, for large systems the standard Davidson algorithm exhibits a low convergence rate. In order to overcome this problem, we generalize the two-level Davidson algorithm to solve linear equation problems. A more stable performance is achieved with this new algorithm. Our method should encourage further studies of excited-state properties with LR-TDDFT in the plane wave basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信