基于模糊c-均值聚类RFM分析的高校客户忠诚度细分

Syahroni Hidayat, R. Rismayati, M. Tajuddin, Ni Luh Putu Merawati
{"title":"基于模糊c-均值聚类RFM分析的高校客户忠诚度细分","authors":"Syahroni Hidayat, R. Rismayati, M. Tajuddin, Ni Luh Putu Merawati","doi":"10.14710/jtsiskom.8.2.2020.133-139","DOIUrl":null,"url":null,"abstract":"One of the strategic plans of the developing universities in obtaining new students is forming a partnership with surrounding high schools. However, partnerships made does not always behave as expected. This paper presented the segmentation technique to the previous new student admission dataset using the integration of recency, frequency, and monetary (RFM) analysis and fuzzy c-means (FCM) algorithm to evaluate the loyalty of the entire school that has bound the partnership with the institution. The dataset is converted using the RFM approach before processed with the FCM algorithm. The result reveals that the schools can be segmented, respectively, as high potential (SP), potential (P), low potential (CP), and very low potential (KP) categories with PCI value 0.86. From the analysis of SP, P, and CP, only 71 % of 52 school partners categorized as loyal partners.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"133-139"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Segmentation of university customers loyalty based on RFM analysis using fuzzy c-means clustering\",\"authors\":\"Syahroni Hidayat, R. Rismayati, M. Tajuddin, Ni Luh Putu Merawati\",\"doi\":\"10.14710/jtsiskom.8.2.2020.133-139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the strategic plans of the developing universities in obtaining new students is forming a partnership with surrounding high schools. However, partnerships made does not always behave as expected. This paper presented the segmentation technique to the previous new student admission dataset using the integration of recency, frequency, and monetary (RFM) analysis and fuzzy c-means (FCM) algorithm to evaluate the loyalty of the entire school that has bound the partnership with the institution. The dataset is converted using the RFM approach before processed with the FCM algorithm. The result reveals that the schools can be segmented, respectively, as high potential (SP), potential (P), low potential (CP), and very low potential (KP) categories with PCI value 0.86. From the analysis of SP, P, and CP, only 71 % of 52 school partners categorized as loyal partners.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"8 1\",\"pages\":\"133-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.8.2.2020.133-139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.8.2.2020.133-139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

发展中的大学在招收新生方面的战略计划之一是与周边高中建立伙伴关系。然而,建立的伙伴关系并不总是如预期的那样。本文提出了对以前的新生入学数据集的分割技术,使用最近,频率和货币(RFM)分析和模糊c-均值(FCM)算法的集成来评估与机构建立伙伴关系的整个学校的忠诚度。在使用FCM算法处理之前,先使用RFM方法对数据集进行转换。结果表明,学校可分为高潜力(SP)、潜力(P)、低潜力(CP)和极低潜力(KP)类别,PCI值为0.86。从SP, P和CP的分析来看,52个学校合作伙伴中只有71%被归类为忠诚合作伙伴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of university customers loyalty based on RFM analysis using fuzzy c-means clustering
One of the strategic plans of the developing universities in obtaining new students is forming a partnership with surrounding high schools. However, partnerships made does not always behave as expected. This paper presented the segmentation technique to the previous new student admission dataset using the integration of recency, frequency, and monetary (RFM) analysis and fuzzy c-means (FCM) algorithm to evaluate the loyalty of the entire school that has bound the partnership with the institution. The dataset is converted using the RFM approach before processed with the FCM algorithm. The result reveals that the schools can be segmented, respectively, as high potential (SP), potential (P), low potential (CP), and very low potential (KP) categories with PCI value 0.86. From the analysis of SP, P, and CP, only 71 % of 52 school partners categorized as loyal partners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信