通过多维尺度生成语义地图:语言学应用和理论

IF 1 2区 文学 0 LANGUAGE & LINGUISTICS
Martijn van der Klis, J. Tellings
{"title":"通过多维尺度生成语义地图:语言学应用和理论","authors":"Martijn van der Klis, J. Tellings","doi":"10.1515/cllt-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.","PeriodicalId":45605,"journal":{"name":"Corpus Linguistics and Linguistic Theory","volume":"18 1","pages":"627 - 665"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generating semantic maps through multidimensional scaling: linguistic applications and theory\",\"authors\":\"Martijn van der Klis, J. Tellings\",\"doi\":\"10.1515/cllt-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.\",\"PeriodicalId\":45605,\"journal\":{\"name\":\"Corpus Linguistics and Linguistic Theory\",\"volume\":\"18 1\",\"pages\":\"627 - 665\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corpus Linguistics and Linguistic Theory\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1515/cllt-2021-0018\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corpus Linguistics and Linguistic Theory","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1515/cllt-2021-0018","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要本文报道了在语言学研究中应用多维尺度(MDS)技术创建语义图的最新进展。MDS是指一种统计技术,它将对象(词汇、语言上下文、语言等)表示为空间中的点,使得对象之间的紧密相似性对应于表示中对应点之间的紧密距离。我们重点研究MDS与平行语料库数据在跨语言变异研究中的应用。我们首先介绍了MDS的数学基础,然后对过去将MDS技术与并行语料库数据相结合的研究进行了详尽的概述。我们提出了一组术语来简洁地描述特定MDS应用程序的关键参数。然后,我们证明了这种计算方法是理论中立的,即它可以用于回答各种语言理论框架中的研究问题。最后,我们展示了这将如何为MDS语言学研究带来两条未来发展道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating semantic maps through multidimensional scaling: linguistic applications and theory
Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
12.50%
发文量
15
期刊介绍: Corpus Linguistics and Linguistic Theory (CLLT) is a peer-reviewed journal publishing high-quality original corpus-based research focusing on theoretically relevant issues in all core areas of linguistic research, or other recognized topic areas. It provides a forum for researchers from different theoretical backgrounds and different areas of interest that share a commitment to the systematic and exhaustive analysis of naturally occurring language. Contributions from all theoretical frameworks are welcome but they should be addressed at a general audience and thus be explicit about their assumptions and discovery procedures and provide sufficient theoretical background to be accessible to researchers from different frameworks. Topics Corpus Linguistics Quantitative Linguistics Phonology Morphology Semantics Syntax Pragmatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信