{"title":"通过多维尺度生成语义地图:语言学应用和理论","authors":"Martijn van der Klis, J. Tellings","doi":"10.1515/cllt-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.","PeriodicalId":45605,"journal":{"name":"Corpus Linguistics and Linguistic Theory","volume":"18 1","pages":"627 - 665"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Generating semantic maps through multidimensional scaling: linguistic applications and theory\",\"authors\":\"Martijn van der Klis, J. Tellings\",\"doi\":\"10.1515/cllt-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.\",\"PeriodicalId\":45605,\"journal\":{\"name\":\"Corpus Linguistics and Linguistic Theory\",\"volume\":\"18 1\",\"pages\":\"627 - 665\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corpus Linguistics and Linguistic Theory\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1515/cllt-2021-0018\",\"RegionNum\":2,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corpus Linguistics and Linguistic Theory","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1515/cllt-2021-0018","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Generating semantic maps through multidimensional scaling: linguistic applications and theory
Abstract This paper reports on the state-of-the-art in application of multidimensional scaling (MDS) techniques to create semantic maps in linguistic research. MDS refers to a statistical technique that represents objects (lexical items, linguistic contexts, languages, etc.) as points in a space so that close similarity between the objects corresponds to close distances between the corresponding points in the representation. We focus on the use of MDS in combination with parallel corpus data as used in research on cross-linguistic variation. We first introduce the mathematical foundations of MDS and then give an exhaustive overview of past research that employs MDS techniques in combination with parallel corpus data. We propose a set of terminology to succinctly describe the key parameters of a particular MDS application. We then show that this computational methodology is theory-neutral, i.e. it can be employed to answer research questions in a variety of linguistic theoretical frameworks. Finally, we show how this leads to two lines of future developments for MDS research in linguistics.
期刊介绍:
Corpus Linguistics and Linguistic Theory (CLLT) is a peer-reviewed journal publishing high-quality original corpus-based research focusing on theoretically relevant issues in all core areas of linguistic research, or other recognized topic areas. It provides a forum for researchers from different theoretical backgrounds and different areas of interest that share a commitment to the systematic and exhaustive analysis of naturally occurring language. Contributions from all theoretical frameworks are welcome but they should be addressed at a general audience and thus be explicit about their assumptions and discovery procedures and provide sufficient theoretical background to be accessible to researchers from different frameworks. Topics Corpus Linguistics Quantitative Linguistics Phonology Morphology Semantics Syntax Pragmatics.