扩展模群的法雷图与有理不动点

IF 0.7 Q2 MATHEMATICS
Bilal Demir, Mustafa Karataş
{"title":"扩展模群的法雷图与有理不动点","authors":"Bilal Demir, Mustafa Karataş","doi":"10.31801/cfsuasmas.1089480","DOIUrl":null,"url":null,"abstract":"Fixed points of matrices have many applications in various areas of science and mathematics. Extended modular group ¯¯¯¯ΓΓ¯ is the group of 2×22×2 matrices with integer entries and determinant ±1±1. There are strong connections between extended modular group, continued fractions and Farey graph. Farey graph is a graph with vertex set ^Q=Q∪{∞}Q^=Q∪{∞}. In this study, we consider the elements in ¯¯¯¯ΓΓ¯ that fix rationals. For a given rational number, we use its Farey neighbours to obtain the matrix representation of the element in $\\overline{\\Gamma}$ that fixes the given rational. Then we express such elements as words in terms of generators using the relations between the Farey graph and continued fractions. Finally we give the new block reduced form of these words which all blocks have Fibonacci numbers entries.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Farey graph and rational fixed points of the extended modular group\",\"authors\":\"Bilal Demir, Mustafa Karataş\",\"doi\":\"10.31801/cfsuasmas.1089480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fixed points of matrices have many applications in various areas of science and mathematics. Extended modular group ¯¯¯¯ΓΓ¯ is the group of 2×22×2 matrices with integer entries and determinant ±1±1. There are strong connections between extended modular group, continued fractions and Farey graph. Farey graph is a graph with vertex set ^Q=Q∪{∞}Q^=Q∪{∞}. In this study, we consider the elements in ¯¯¯¯ΓΓ¯ that fix rationals. For a given rational number, we use its Farey neighbours to obtain the matrix representation of the element in $\\\\overline{\\\\Gamma}$ that fixes the given rational. Then we express such elements as words in terms of generators using the relations between the Farey graph and continued fractions. Finally we give the new block reduced form of these words which all blocks have Fibonacci numbers entries.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1089480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1089480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

矩阵的不动点在科学和数学的各个领域都有许多应用。扩展模群ΓΓ是一组2×22×2矩阵,具有整数项和行列式±1±1。扩展模群、连分式和Farey图之间有很强的联系。Farey图是一个顶点集为^Q=Qõ{∞}Q^=Qõ{∞}的图。在这项研究中,我们考虑了ΓΓ中固定有理数的元素。对于给定有理数,我们使用它的Farey邻居来获得$\overline{\Gamma}$中元素的矩阵表示,该矩阵表示固定了给定有理数。然后,我们使用Farey图和连分式之间的关系,用生成器将这些元素表示为单词。最后,我们给出了这些字的新的块简化形式,所有块都有Fibonacci数条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Farey graph and rational fixed points of the extended modular group
Fixed points of matrices have many applications in various areas of science and mathematics. Extended modular group ¯¯¯¯ΓΓ¯ is the group of 2×22×2 matrices with integer entries and determinant ±1±1. There are strong connections between extended modular group, continued fractions and Farey graph. Farey graph is a graph with vertex set ^Q=Q∪{∞}Q^=Q∪{∞}. In this study, we consider the elements in ¯¯¯¯ΓΓ¯ that fix rationals. For a given rational number, we use its Farey neighbours to obtain the matrix representation of the element in $\overline{\Gamma}$ that fixes the given rational. Then we express such elements as words in terms of generators using the relations between the Farey graph and continued fractions. Finally we give the new block reduced form of these words which all blocks have Fibonacci numbers entries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信