{"title":"外代数自同态的玻色子和费米子表示","authors":"Ommolbanin Behzad, Letterio Gatto","doi":"10.4064/fm9-12-2020","DOIUrl":null,"url":null,"abstract":"We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bosonic and fermionic representations of endomorphisms of exterior algebras\",\"authors\":\"Ommolbanin Behzad, Letterio Gatto\",\"doi\":\"10.4064/fm9-12-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\\\\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm9-12-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm9-12-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bosonic and fermionic representations of endomorphisms of exterior algebras
We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.