外代数自同态的玻色子和费米子表示

Pub Date : 2020-09-01 DOI:10.4064/fm9-12-2020
Ommolbanin Behzad, Letterio Gatto
{"title":"外代数自同态的玻色子和费米子表示","authors":"Ommolbanin Behzad, Letterio Gatto","doi":"10.4064/fm9-12-2020","DOIUrl":null,"url":null,"abstract":"We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bosonic and fermionic representations of endomorphisms of exterior algebras\",\"authors\":\"Ommolbanin Behzad, Letterio Gatto\",\"doi\":\"10.4064/fm9-12-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\\\\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm9-12-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm9-12-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们描述了无限可数维的${\mathbb Q}$-向量空间的外代数的自同态的李超代数的费米子和玻色子Fock表示,除了有限多个基元素外,所有基元素都消失了。我们通过将舒伯特导数推广到费米-福克空间来实现这一目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bosonic and fermionic representations of endomorphisms of exterior algebras
We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the ${\mathbb Q}$-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations to the Fermionic Fock space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信