泊松过程驱动的随机高阶KdV方程的不变测度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pengfei Xu, Jianhua Huang, Wei Yan
{"title":"泊松过程驱动的随机高阶KdV方程的不变测度","authors":"Pengfei Xu, Jianhua Huang, Wei Yan","doi":"10.1051/MMNP/2021041","DOIUrl":null,"url":null,"abstract":"The current paper is devoted to stochastic damped higher order KdV equation driven by Poisson process. We establish the well-posedness of stochastic damped higher-order KdV equation, and prove that there exists an unique invariant measure for non-random initial conditions. Some discussion on the general pure jump noise case are also provided. Some numerical simulations of the invariant measure are provided to support the theoretical results. Mathematics Subject Classification. 60H15, 37L55. Received March 27, 2020. Accepted July 13, 2021.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Invariant measure of stochastic higher order KdV equation driven by Poisson processes\",\"authors\":\"Pengfei Xu, Jianhua Huang, Wei Yan\",\"doi\":\"10.1051/MMNP/2021041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current paper is devoted to stochastic damped higher order KdV equation driven by Poisson process. We establish the well-posedness of stochastic damped higher-order KdV equation, and prove that there exists an unique invariant measure for non-random initial conditions. Some discussion on the general pure jump noise case are also provided. Some numerical simulations of the invariant measure are provided to support the theoretical results. Mathematics Subject Classification. 60H15, 37L55. Received March 27, 2020. Accepted July 13, 2021.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/MMNP/2021041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/MMNP/2021041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了泊松过程驱动的随机阻尼高阶KdV方程。建立了随机阻尼高阶KdV方程的适定性,并证明了对于非随机初始条件存在唯一不变测度。对一般纯跳变噪声情况也作了讨论。给出了一些不变测度的数值模拟来支持理论结果。数学学科分类。60H15, 37L55。收于2020年3月27日。2021年7月13日接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant measure of stochastic higher order KdV equation driven by Poisson processes
The current paper is devoted to stochastic damped higher order KdV equation driven by Poisson process. We establish the well-posedness of stochastic damped higher-order KdV equation, and prove that there exists an unique invariant measure for non-random initial conditions. Some discussion on the general pure jump noise case are also provided. Some numerical simulations of the invariant measure are provided to support the theoretical results. Mathematics Subject Classification. 60H15, 37L55. Received March 27, 2020. Accepted July 13, 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信