叶片修整长度对船用离心泵性能的影响

IF 1.1 4区 工程技术 Q4 MECHANICS
L. J. Zhai, H. X. Chen, Q. Gu, Z. Ma
{"title":"叶片修整长度对船用离心泵性能的影响","authors":"L. J. Zhai, H. X. Chen, Q. Gu, Z. Ma","doi":"10.47176/jafm.16.11.1936","DOIUrl":null,"url":null,"abstract":"To study the hydrodynamic characteristics of blade trimming length in centrifugal pumps, Delayed Detached Eddy Simulation (DDES) with nonlinear eddy viscosity was utilized to conduct unsteady calculations on the centrifugal pump. A comprehensive examination of the fluid dynamic properties of the centrifugal pump, including external features, flow conditions, and pressure fluctuations, was carried out. By applying the theory of entropy production, the areas of high energy loss within the centrifugal pump were identified, and the correlations between local entropy production, energy loss, and unsteady flow in different areas with varying blade trimming lengths were analyzed. The results indicate that with the increase in blade trimming length, under rated flow conditions, the head decreases by 1.8%, 3.2%, and 5.7% for different blade trimming lengths, respectively, compared to normal impellers. Similarly, the efficiency decreases by 0.5%, 0.8%, and 1.0% for different blade trimming lengths, respectively. Similar trends were observed under other working conditions as well. As the degree of blade trimming increases, the irreversible losses after the failure of the centrifugal pump also increase significantly, indicating that the flow inside the centrifugal pump becomes disorder. Blade trimming leads to a disorderly fluid flow inside the centrifugal pump, causing an increase in the radial force during operation, which in turn leads to an increase in vibration amplitude and affects its operational stability. Blade trimming failure has a significant impact on the frequency and amplitude of pressure pulsation, resulting in abnormal pressure pulsation and abnormal vibration of the centrifugal pump. Therefore, early warning and diagnosis of blade trimming can be achieved through pressure pulsation monitoring.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Blade Trimming Length on the Performance of Marine Centrifugal Pump\",\"authors\":\"L. J. Zhai, H. X. Chen, Q. Gu, Z. Ma\",\"doi\":\"10.47176/jafm.16.11.1936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study the hydrodynamic characteristics of blade trimming length in centrifugal pumps, Delayed Detached Eddy Simulation (DDES) with nonlinear eddy viscosity was utilized to conduct unsteady calculations on the centrifugal pump. A comprehensive examination of the fluid dynamic properties of the centrifugal pump, including external features, flow conditions, and pressure fluctuations, was carried out. By applying the theory of entropy production, the areas of high energy loss within the centrifugal pump were identified, and the correlations between local entropy production, energy loss, and unsteady flow in different areas with varying blade trimming lengths were analyzed. The results indicate that with the increase in blade trimming length, under rated flow conditions, the head decreases by 1.8%, 3.2%, and 5.7% for different blade trimming lengths, respectively, compared to normal impellers. Similarly, the efficiency decreases by 0.5%, 0.8%, and 1.0% for different blade trimming lengths, respectively. Similar trends were observed under other working conditions as well. As the degree of blade trimming increases, the irreversible losses after the failure of the centrifugal pump also increase significantly, indicating that the flow inside the centrifugal pump becomes disorder. Blade trimming leads to a disorderly fluid flow inside the centrifugal pump, causing an increase in the radial force during operation, which in turn leads to an increase in vibration amplitude and affects its operational stability. Blade trimming failure has a significant impact on the frequency and amplitude of pressure pulsation, resulting in abnormal pressure pulsation and abnormal vibration of the centrifugal pump. Therefore, early warning and diagnosis of blade trimming can be achieved through pressure pulsation monitoring.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.16.11.1936\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1936","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

为了研究离心泵叶片修边长度的流体动力学特性,利用具有非线性涡粘性的延迟分离涡模拟(DDES)对离心泵进行了非定常计算。对离心泵的流体动力学特性进行了全面的检查,包括外部特征、流动条件和压力波动。应用熵产生理论,确定了离心泵内部能量损失较大的区域,并分析了不同修边长度区域内局部熵产生、能量损失和非定常流动之间的相关性。结果表明,随着叶片修边长度的增加,在额定流量条件下,与正常叶轮相比,不同修边长度下的水头分别下降1.8%、3.2%和5.7%。类似地,对于不同的刀片修剪长度,效率分别降低0.5%、0.8%和1.0%。在其他工作条件下也观察到类似的趋势。随着叶片修整程度的增加,离心泵故障后的不可逆损失也显著增加,表明离心泵内部的流动变得无序。叶片修整导致离心泵内部流体无序流动,导致运行过程中径向力增加,进而导致振动幅度增加,影响其运行稳定性。叶片修边故障对压力脉动的频率和幅度有很大影响,导致离心泵出现异常压力脉动和异常振动。因此,通过压力脉动监测可以实现叶片修边的预警和诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Blade Trimming Length on the Performance of Marine Centrifugal Pump
To study the hydrodynamic characteristics of blade trimming length in centrifugal pumps, Delayed Detached Eddy Simulation (DDES) with nonlinear eddy viscosity was utilized to conduct unsteady calculations on the centrifugal pump. A comprehensive examination of the fluid dynamic properties of the centrifugal pump, including external features, flow conditions, and pressure fluctuations, was carried out. By applying the theory of entropy production, the areas of high energy loss within the centrifugal pump were identified, and the correlations between local entropy production, energy loss, and unsteady flow in different areas with varying blade trimming lengths were analyzed. The results indicate that with the increase in blade trimming length, under rated flow conditions, the head decreases by 1.8%, 3.2%, and 5.7% for different blade trimming lengths, respectively, compared to normal impellers. Similarly, the efficiency decreases by 0.5%, 0.8%, and 1.0% for different blade trimming lengths, respectively. Similar trends were observed under other working conditions as well. As the degree of blade trimming increases, the irreversible losses after the failure of the centrifugal pump also increase significantly, indicating that the flow inside the centrifugal pump becomes disorder. Blade trimming leads to a disorderly fluid flow inside the centrifugal pump, causing an increase in the radial force during operation, which in turn leads to an increase in vibration amplitude and affects its operational stability. Blade trimming failure has a significant impact on the frequency and amplitude of pressure pulsation, resulting in abnormal pressure pulsation and abnormal vibration of the centrifugal pump. Therefore, early warning and diagnosis of blade trimming can be achieved through pressure pulsation monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信