无界双线性系统的最优控制问题及其应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Soufiane Yahyaoui, M. Ouzahra
{"title":"无界双线性系统的最优控制问题及其应用","authors":"Soufiane Yahyaoui, M. Ouzahra","doi":"10.1080/23307706.2023.2254300","DOIUrl":null,"url":null,"abstract":"In this paper, we will investigate the optimal control problem for unbounded bilinear systems, with ( p , q ) -admissible control operators. We will first study the case of finite time-horizon with unconstrained or constrained endpoint. This result is further applied to build the optimal control for infinite time horizon. Finally, we solve the bilinear optimal control for the transport equation. Then we consider the fractional diffusion equation, for which we prove the strong stabilisation by an optimal time-varying feedback control.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control problem for unbounded bilinear systems and applications\",\"authors\":\"Soufiane Yahyaoui, M. Ouzahra\",\"doi\":\"10.1080/23307706.2023.2254300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will investigate the optimal control problem for unbounded bilinear systems, with ( p , q ) -admissible control operators. We will first study the case of finite time-horizon with unconstrained or constrained endpoint. This result is further applied to build the optimal control for infinite time horizon. Finally, we solve the bilinear optimal control for the transport equation. Then we consider the fractional diffusion equation, for which we prove the strong stabilisation by an optimal time-varying feedback control.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23307706.2023.2254300\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23307706.2023.2254300","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将研究具有(p,q)-可容许控制算子的无界双线性系统的最优控制问题。我们将首先研究具有无约束或约束端点的有限时间范围的情况。该结果进一步应用于建立有限时间范围内的最优控制。最后,我们求解了传输方程的双线性最优控制。然后我们考虑分数扩散方程,通过最优时变反馈控制证明了该方程的强稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control problem for unbounded bilinear systems and applications
In this paper, we will investigate the optimal control problem for unbounded bilinear systems, with ( p , q ) -admissible control operators. We will first study the case of finite time-horizon with unconstrained or constrained endpoint. This result is further applied to build the optimal control for infinite time horizon. Finally, we solve the bilinear optimal control for the transport equation. Then we consider the fractional diffusion equation, for which we prove the strong stabilisation by an optimal time-varying feedback control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信