Natalija Suhareva, Juris Aigars, Rita Poikāne, Juris Tunens
{"title":"饵料生态和饵料地点对欧亚鲈鱼总汞浓度的影响","authors":"Natalija Suhareva, Juris Aigars, Rita Poikāne, Juris Tunens","doi":"10.1186/s12302-021-00523-w","DOIUrl":null,"url":null,"abstract":"<p>Eurasian perch (<i>Perca fluviatilis</i>) is an ecologically significant fish species in the Baltic Sea and has been recognized as a suitable organism to measure concentrations of mercury (Hg) contamination. The adult species occupy a high trophic position; therefore, significant levels of the hazardous substances tend to bioaccumulate in their tissues. However, the ability of the species to inhabit a wide range of feeding ground raises concerns about the adequacy of monitoring data in relation to the representativeness of measured levels of Hg at specific locations. Accounting for the migratory characteristics of this species can shed light on the origin of the analyzed specimens and thus trace Hg uptake chain. Perch samples and potential perch prey were collected at three remote stations in a fully interlinked system river–lake–coastal/transitional waters of the Gulf of Riga. Total mercury (THg) concentration and stable isotope ratios were measured in each sampled item. The perch data were divided into three subgroups associated with specific feeding grounds and one mixed group. A Bayesian mixing model was implemented to quantify the feeding preferences of each group, and based on the results, influence of each food source on Hg uptake by perch was modeled by means of Gaussian GAM model.</p><p>Calculated carbon and nitrogen stable isotope values demonstrated clear evidence of perch specimens migrating between the sampling stations. Substantial proportion of specimens sampled in river and lake stations had isotopic signals consistent with feeding in the gulf. The group of perch associated with feeding in the river grounds exhibited the highest THg concentrations with mean value of 209?μg?kg<sup>?1</sup> wet weight. The food items <i>C. harengus membras</i> and Crustacean showed significant mitigating effects on THg concentration. The rest of the food items showed a secondary influence on the variation of THg concentration.</p><p>The study clearly showed that the high mobility of perch along associated aquatic systems has a noticeable effect on Hg concentrations measured in the fish. Therefore, trophic position and isotopic signatures, along with identification of the food sources, can serve as important supplementary tools for more accurate data interpretation of Hg accumulation.</p>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"33 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12302-021-00523-w","citationCount":"2","resultStr":"{\"title\":\"The influence of feeding ecology and location on total mercury concentrations in Eurasian perch (Perca fluviatilis)\",\"authors\":\"Natalija Suhareva, Juris Aigars, Rita Poikāne, Juris Tunens\",\"doi\":\"10.1186/s12302-021-00523-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eurasian perch (<i>Perca fluviatilis</i>) is an ecologically significant fish species in the Baltic Sea and has been recognized as a suitable organism to measure concentrations of mercury (Hg) contamination. The adult species occupy a high trophic position; therefore, significant levels of the hazardous substances tend to bioaccumulate in their tissues. However, the ability of the species to inhabit a wide range of feeding ground raises concerns about the adequacy of monitoring data in relation to the representativeness of measured levels of Hg at specific locations. Accounting for the migratory characteristics of this species can shed light on the origin of the analyzed specimens and thus trace Hg uptake chain. Perch samples and potential perch prey were collected at three remote stations in a fully interlinked system river–lake–coastal/transitional waters of the Gulf of Riga. Total mercury (THg) concentration and stable isotope ratios were measured in each sampled item. The perch data were divided into three subgroups associated with specific feeding grounds and one mixed group. A Bayesian mixing model was implemented to quantify the feeding preferences of each group, and based on the results, influence of each food source on Hg uptake by perch was modeled by means of Gaussian GAM model.</p><p>Calculated carbon and nitrogen stable isotope values demonstrated clear evidence of perch specimens migrating between the sampling stations. Substantial proportion of specimens sampled in river and lake stations had isotopic signals consistent with feeding in the gulf. The group of perch associated with feeding in the river grounds exhibited the highest THg concentrations with mean value of 209?μg?kg<sup>?1</sup> wet weight. The food items <i>C. harengus membras</i> and Crustacean showed significant mitigating effects on THg concentration. The rest of the food items showed a secondary influence on the variation of THg concentration.</p><p>The study clearly showed that the high mobility of perch along associated aquatic systems has a noticeable effect on Hg concentrations measured in the fish. Therefore, trophic position and isotopic signatures, along with identification of the food sources, can serve as important supplementary tools for more accurate data interpretation of Hg accumulation.</p>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12302-021-00523-w\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-021-00523-w\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-021-00523-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The influence of feeding ecology and location on total mercury concentrations in Eurasian perch (Perca fluviatilis)
Eurasian perch (Perca fluviatilis) is an ecologically significant fish species in the Baltic Sea and has been recognized as a suitable organism to measure concentrations of mercury (Hg) contamination. The adult species occupy a high trophic position; therefore, significant levels of the hazardous substances tend to bioaccumulate in their tissues. However, the ability of the species to inhabit a wide range of feeding ground raises concerns about the adequacy of monitoring data in relation to the representativeness of measured levels of Hg at specific locations. Accounting for the migratory characteristics of this species can shed light on the origin of the analyzed specimens and thus trace Hg uptake chain. Perch samples and potential perch prey were collected at three remote stations in a fully interlinked system river–lake–coastal/transitional waters of the Gulf of Riga. Total mercury (THg) concentration and stable isotope ratios were measured in each sampled item. The perch data were divided into three subgroups associated with specific feeding grounds and one mixed group. A Bayesian mixing model was implemented to quantify the feeding preferences of each group, and based on the results, influence of each food source on Hg uptake by perch was modeled by means of Gaussian GAM model.
Calculated carbon and nitrogen stable isotope values demonstrated clear evidence of perch specimens migrating between the sampling stations. Substantial proportion of specimens sampled in river and lake stations had isotopic signals consistent with feeding in the gulf. The group of perch associated with feeding in the river grounds exhibited the highest THg concentrations with mean value of 209?μg?kg?1 wet weight. The food items C. harengus membras and Crustacean showed significant mitigating effects on THg concentration. The rest of the food items showed a secondary influence on the variation of THg concentration.
The study clearly showed that the high mobility of perch along associated aquatic systems has a noticeable effect on Hg concentrations measured in the fish. Therefore, trophic position and isotopic signatures, along with identification of the food sources, can serve as important supplementary tools for more accurate data interpretation of Hg accumulation.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.