关于图的边理想的小符号幂的正则性

Pub Date : 2023-02-20 DOI:10.7146/math.scand.a-134104
S. A. Seyed Fakhari
{"title":"关于图的边理想的小符号幂的正则性","authors":"S. A. Seyed Fakhari","doi":"10.7146/math.scand.a-134104","DOIUrl":null,"url":null,"abstract":"Assume that $G$ is a graph with edge ideal $I(G)$ and let $I(G)^{(s)}$ denote the $s$-th symbolic power of $I(G)$. It is proved that for every integer $s\\geq 1$, $$ \\mathrm{reg} (I(G)^{(s+1)})\\leq \\max \\bigl \\{\\mathrm{reg} (I(G))$$ $$+2s, \\mathrm{reg} \\bigl (I(G)^{(s+1)}+I(G)^s\\bigr )\\bigr \\}. $$ As a consequence, we conclude that $\\mathrm{reg} (I(G)^{(2)})\\leq \\mathrm{reg} (I(G))+2$, and $\\mathrm{reg} (I(G)^{(3)})\\leq \\mathrm{reg} (I(G))+4$. Moreover, it is shown that if for some integer $k\\geq 1$, the graph $G$ has no odd cycle of length at most $2k-1$, then $\\mathrm{reg} (I(G)^{(s)})\\leq 2s+\\mathrm{reg} (I(G))-2$, for every integer $s\\leq k+1$. Finally, it is proven that $\\mathrm{reg} (I(G)^{(s)})=2s$, for $s\\in \\{2, 3, 4\\}$, provided that the complementary graph $\\overline {G}$ is chordal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the regularity of small symbolic powers of edge ideals of graphs\",\"authors\":\"S. A. Seyed Fakhari\",\"doi\":\"10.7146/math.scand.a-134104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assume that $G$ is a graph with edge ideal $I(G)$ and let $I(G)^{(s)}$ denote the $s$-th symbolic power of $I(G)$. It is proved that for every integer $s\\\\geq 1$, $$ \\\\mathrm{reg} (I(G)^{(s+1)})\\\\leq \\\\max \\\\bigl \\\\{\\\\mathrm{reg} (I(G))$$ $$+2s, \\\\mathrm{reg} \\\\bigl (I(G)^{(s+1)}+I(G)^s\\\\bigr )\\\\bigr \\\\}. $$ As a consequence, we conclude that $\\\\mathrm{reg} (I(G)^{(2)})\\\\leq \\\\mathrm{reg} (I(G))+2$, and $\\\\mathrm{reg} (I(G)^{(3)})\\\\leq \\\\mathrm{reg} (I(G))+4$. Moreover, it is shown that if for some integer $k\\\\geq 1$, the graph $G$ has no odd cycle of length at most $2k-1$, then $\\\\mathrm{reg} (I(G)^{(s)})\\\\leq 2s+\\\\mathrm{reg} (I(G))-2$, for every integer $s\\\\leq k+1$. Finally, it is proven that $\\\\mathrm{reg} (I(G)^{(s)})=2s$, for $s\\\\in \\\\{2, 3, 4\\\\}$, provided that the complementary graph $\\\\overline {G}$ is chordal.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-134104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-134104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

假设$G$是一个具有边理想$I(G)$的图,并且让$I(G)^{(s)}$表示$I(G$的符号次幂。证明了对于每一个整数$s\geq1$,$$\mathrm{reg}(I(G)^{(s+1)}因此,我们得出结论,$\mathrm{reg}(I(G)^{(2)})\leq\mathrm{reg}(I(G))+2$和$\mathrm{reg}。此外,还证明了如果对于某个整数$k\geq1$,图$G$至多没有长度为$2k-1$的奇循环,那么对于每个整数$s\leqk+1$,$\mathrm{reg}(I(G)^{(s)})\leq2s+\mathrm{reg}(I(G))-2$。最后,证明了$\mathrm{reg}(I(G)^{(s)})=2s$,对于$s\in\{2,3,4\}$,条件是补图$\overline{G}$是弦的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the regularity of small symbolic powers of edge ideals of graphs
Assume that $G$ is a graph with edge ideal $I(G)$ and let $I(G)^{(s)}$ denote the $s$-th symbolic power of $I(G)$. It is proved that for every integer $s\geq 1$, $$ \mathrm{reg} (I(G)^{(s+1)})\leq \max \bigl \{\mathrm{reg} (I(G))$$ $$+2s, \mathrm{reg} \bigl (I(G)^{(s+1)}+I(G)^s\bigr )\bigr \}. $$ As a consequence, we conclude that $\mathrm{reg} (I(G)^{(2)})\leq \mathrm{reg} (I(G))+2$, and $\mathrm{reg} (I(G)^{(3)})\leq \mathrm{reg} (I(G))+4$. Moreover, it is shown that if for some integer $k\geq 1$, the graph $G$ has no odd cycle of length at most $2k-1$, then $\mathrm{reg} (I(G)^{(s)})\leq 2s+\mathrm{reg} (I(G))-2$, for every integer $s\leq k+1$. Finally, it is proven that $\mathrm{reg} (I(G)^{(s)})=2s$, for $s\in \{2, 3, 4\}$, provided that the complementary graph $\overline {G}$ is chordal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信