HST提升的显式内积公式和贝塞尔周期公式

IF 0.5 4区 数学 Q3 MATHEMATICS
K. Namikawa
{"title":"HST提升的显式内积公式和贝塞尔周期公式","authors":"K. Namikawa","doi":"10.1215/21562261-2022-0004","DOIUrl":null,"url":null,"abstract":"We explicitly give an inner product formula and a Bessel period formula for theta series on GSp(4), which was studied by Harris, Soudry and Taylor. As a consequence, we prove a non-vanishing of the theta series of small weights and we give a criterion for the non-vanishing of the theta series modulo a prime.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Explicit inner product formulas and Bessel period formulas for HST lifts\",\"authors\":\"K. Namikawa\",\"doi\":\"10.1215/21562261-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly give an inner product formula and a Bessel period formula for theta series on GSp(4), which was studied by Harris, Soudry and Taylor. As a consequence, we prove a non-vanishing of the theta series of small weights and we give a criterion for the non-vanishing of the theta series modulo a prime.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0004\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们明确地给出了GSp(4)上θ级数的内积公式和贝塞尔周期公式,这是Harris、Soudry和Taylor研究的。因此,我们证明了小权的θ级数的不消失,并给出了模a素数的θ级数不消失的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit inner product formulas and Bessel period formulas for HST lifts
We explicitly give an inner product formula and a Bessel period formula for theta series on GSp(4), which was studied by Harris, Soudry and Taylor. As a consequence, we prove a non-vanishing of the theta series of small weights and we give a criterion for the non-vanishing of the theta series modulo a prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信