{"title":"半群上的正弦减法律","authors":"B. Ebanks","doi":"10.2478/amsil-2023-0002","DOIUrl":null,"url":null,"abstract":"Abstract We consider two variants of the sine subtraction law on a semi-group S. The main objective is to solve f(xy∗ ) = f(x)g(y) − g(x)f(y) for unknown functions f, g : S → ℂ, where x ↦ x* is an anti-homomorphic involution. Until now this equation was not solved even when S is a non-Abelian group and x* = x−1. We find the solutions assuming that f is central. A secondary objective is to solve f(xσ(y)) = f(x)g(y) − g(x)f(y), where σ : S → S is a homomorphic involution. Until now this variant was solved assuming that S has an identity element. We also find the continuous solutions of these equations on topological semigroups.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"37 1","pages":"49 - 66"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sine Subtraction Laws on Semigroups\",\"authors\":\"B. Ebanks\",\"doi\":\"10.2478/amsil-2023-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider two variants of the sine subtraction law on a semi-group S. The main objective is to solve f(xy∗ ) = f(x)g(y) − g(x)f(y) for unknown functions f, g : S → ℂ, where x ↦ x* is an anti-homomorphic involution. Until now this equation was not solved even when S is a non-Abelian group and x* = x−1. We find the solutions assuming that f is central. A secondary objective is to solve f(xσ(y)) = f(x)g(y) − g(x)f(y), where σ : S → S is a homomorphic involution. Until now this variant was solved assuming that S has an identity element. We also find the continuous solutions of these equations on topological semigroups.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"37 1\",\"pages\":\"49 - 66\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We consider two variants of the sine subtraction law on a semi-group S. The main objective is to solve f(xy∗ ) = f(x)g(y) − g(x)f(y) for unknown functions f, g : S → ℂ, where x ↦ x* is an anti-homomorphic involution. Until now this equation was not solved even when S is a non-Abelian group and x* = x−1. We find the solutions assuming that f is central. A secondary objective is to solve f(xσ(y)) = f(x)g(y) − g(x)f(y), where σ : S → S is a homomorphic involution. Until now this variant was solved assuming that S has an identity element. We also find the continuous solutions of these equations on topological semigroups.