{"title":"弱超里奇流在颈夹中的作用","authors":"Sajjad Lakzian, M. Munn","doi":"10.1515/agms-2020-0123","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions which are increasing convex functions of the distance function). Our definition of a weak super Ricci flow is based on the coupled contraction property for suitably defined diffusions on maximal diffusion subspaces. In our main theorem, we show that if a non-degenerate spherical neckpinch can be continued beyond the singular time by a smooth forward evolution then the corresponding Ricci flow metric measure spacetime through the singularity is a weak super Ricci flow for a (and therefore for all) convex cost functions if and only if the single point pinching phenomenon holds at singular times; i.e., if singularities form on a finite number of totally geodesic hypersurfaces of the form {x} × 𝕊n. We also show the spacetime is a refined weak super Ricci flow if and only if the flow is a smooth Ricci flow with possibly singular final time.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0123","citationCount":"1","resultStr":"{\"title\":\"On Weak Super Ricci Flow through Neckpinch\",\"authors\":\"Sajjad Lakzian, M. Munn\",\"doi\":\"10.1515/agms-2020-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions which are increasing convex functions of the distance function). Our definition of a weak super Ricci flow is based on the coupled contraction property for suitably defined diffusions on maximal diffusion subspaces. In our main theorem, we show that if a non-degenerate spherical neckpinch can be continued beyond the singular time by a smooth forward evolution then the corresponding Ricci flow metric measure spacetime through the singularity is a weak super Ricci flow for a (and therefore for all) convex cost functions if and only if the single point pinching phenomenon holds at singular times; i.e., if singularities form on a finite number of totally geodesic hypersurfaces of the form {x} × 𝕊n. We also show the spacetime is a refined weak super Ricci flow if and only if the flow is a smooth Ricci flow with possibly singular final time.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0123\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions which are increasing convex functions of the distance function). Our definition of a weak super Ricci flow is based on the coupled contraction property for suitably defined diffusions on maximal diffusion subspaces. In our main theorem, we show that if a non-degenerate spherical neckpinch can be continued beyond the singular time by a smooth forward evolution then the corresponding Ricci flow metric measure spacetime through the singularity is a weak super Ricci flow for a (and therefore for all) convex cost functions if and only if the single point pinching phenomenon holds at singular times; i.e., if singularities form on a finite number of totally geodesic hypersurfaces of the form {x} × 𝕊n. We also show the spacetime is a refined weak super Ricci flow if and only if the flow is a smooth Ricci flow with possibly singular final time.