薄障碍问题的自由边界部分正则性

IF 3.1 1区 数学 Q1 MATHEMATICS
Federico Franceschini, Joaquim Serra
{"title":"薄障碍问题的自由边界部分正则性","authors":"Federico Franceschini,&nbsp;Joaquim Serra","doi":"10.1002/cpa.22152","DOIUrl":null,"url":null,"abstract":"<p>For the thin obstacle problem in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math>, we prove that at <i>all</i> free boundary points, with the exception of a <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-3)$</annotation>\n </semantics></math>-dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a <i>C</i><sup>1, 1</sup>-type free boundary regularity result, up to a codimension 3 set.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"630-669"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Free boundary partial regularity in the thin obstacle problem\",\"authors\":\"Federico Franceschini,&nbsp;Joaquim Serra\",\"doi\":\"10.1002/cpa.22152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For the thin obstacle problem in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n\\\\ge 2$</annotation>\\n </semantics></math>, we prove that at <i>all</i> free boundary points, with the exception of a <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-3)$</annotation>\\n </semantics></math>-dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a <i>C</i><sup>1, 1</sup>-type free boundary regularity result, up to a codimension 3 set.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"630-669\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22152\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22152","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

对于中的薄障碍问题,我们证明了在所有自由边界点,除了一个维度集,该解与它的爆破不同于高阶修正。这种展开需要C1,1型自由边界正则性结果,直到余维3集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free boundary partial regularity in the thin obstacle problem

For the thin obstacle problem in R n $\mathbb {R}^n$ , n 2 $n\ge 2$ , we prove that at all free boundary points, with the exception of a ( n 3 ) $(n-3)$ -dimensional set, the solution differs from its blow-up by higher order corrections. This expansion entails a C1, 1-type free boundary regularity result, up to a codimension 3 set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信