{"title":"拟伽罗瓦点,I:平面曲线的自同构群","authors":"Satoru Fukasawa, Kei Miura, Takeshi Takahashi","doi":"10.2748/tmj/1576724789","DOIUrl":null,"url":null,"abstract":"Summary: We investigate the automorphism group of a plane curve, introducing the notion of a quasi-Galois point. We show that the automorphism group of several curves, for example, Klein quartic, Wiman sextic and Fermat curves, is generated by the groups associated with quasi-Galois points.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Quasi-Galois points, I: Automorphism groups of plane curves\",\"authors\":\"Satoru Fukasawa, Kei Miura, Takeshi Takahashi\",\"doi\":\"10.2748/tmj/1576724789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: We investigate the automorphism group of a plane curve, introducing the notion of a quasi-Galois point. We show that the automorphism group of several curves, for example, Klein quartic, Wiman sextic and Fermat curves, is generated by the groups associated with quasi-Galois points.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj/1576724789\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj/1576724789","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quasi-Galois points, I: Automorphism groups of plane curves
Summary: We investigate the automorphism group of a plane curve, introducing the notion of a quasi-Galois point. We show that the automorphism group of several curves, for example, Klein quartic, Wiman sextic and Fermat curves, is generated by the groups associated with quasi-Galois points.