基于九分量混合高斯Copula模型的诊断检验

A. Nanthakumar
{"title":"基于九分量混合高斯Copula模型的诊断检验","authors":"A. Nanthakumar","doi":"10.5539/IJSP.V10N4P1","DOIUrl":null,"url":null,"abstract":"Here in this paper, we investigate the performance of a diagnostic test based on a mixture Gaussian Copula which incorporates a Markov Chain. Suppose that in the context of an infectious disease, there are three states; Susceptible (S), Infected (I), or Recovered (R). We compare the performance of this approach with the ROC (Receiver Operating Characteristic) Curve which is usually used in diagnostic studies.","PeriodicalId":89781,"journal":{"name":"International journal of statistics and probability","volume":" ","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Diagnostic Test Based on a 9-Component Mixture Gaussian Copula Model\",\"authors\":\"A. Nanthakumar\",\"doi\":\"10.5539/IJSP.V10N4P1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here in this paper, we investigate the performance of a diagnostic test based on a mixture Gaussian Copula which incorporates a Markov Chain. Suppose that in the context of an infectious disease, there are three states; Susceptible (S), Infected (I), or Recovered (R). We compare the performance of this approach with the ROC (Receiver Operating Characteristic) Curve which is usually used in diagnostic studies.\",\"PeriodicalId\":89781,\"journal\":{\"name\":\"International journal of statistics and probability\",\"volume\":\" \",\"pages\":\"1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of statistics and probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/IJSP.V10N4P1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJSP.V10N4P1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个包含马尔可夫链的混合高斯Copula诊断测试的性能。假设在传染病的情况下,有三种状态;易感(S),感染(I)或恢复(R)。我们将这种方法的性能与通常用于诊断研究的ROC(受试者工作特征)曲线进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Diagnostic Test Based on a 9-Component Mixture Gaussian Copula Model
Here in this paper, we investigate the performance of a diagnostic test based on a mixture Gaussian Copula which incorporates a Markov Chain. Suppose that in the context of an infectious disease, there are three states; Susceptible (S), Infected (I), or Recovered (R). We compare the performance of this approach with the ROC (Receiver Operating Characteristic) Curve which is usually used in diagnostic studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信