时变CARMA过程下期权价格的分析公式

IF 0.6 Q4 BUSINESS, FINANCE
Z. Tong
{"title":"时变CARMA过程下期权价格的分析公式","authors":"Z. Tong","doi":"10.1142/s242478632350024x","DOIUrl":null,"url":null,"abstract":"We consider the option pricing problem when the underlying asset price is driven by a continuous time autoregressive moving average (CARMA) process, time changed a Lévy subordinator or/and an absolutely continuous time change process. We derive the analytical formulas for the option prices by employing the orthogonal polynomial expansion method. Our method is based on the observation that the CARMA process belongs to the class of polynomial diffusion and the time variable and underlying state variables enter the polynomial expansion separately. We demonstrate the accuracy of the method through a number of numerical experiments. We also investigate the price sensitivities with respect to the key parameters that govern the dynamics of the underlying state and time change variables.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical formulas for option prices under time-changed CARMA process\",\"authors\":\"Z. Tong\",\"doi\":\"10.1142/s242478632350024x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the option pricing problem when the underlying asset price is driven by a continuous time autoregressive moving average (CARMA) process, time changed a Lévy subordinator or/and an absolutely continuous time change process. We derive the analytical formulas for the option prices by employing the orthogonal polynomial expansion method. Our method is based on the observation that the CARMA process belongs to the class of polynomial diffusion and the time variable and underlying state variables enter the polynomial expansion separately. We demonstrate the accuracy of the method through a number of numerical experiments. We also investigate the price sensitivities with respect to the key parameters that govern the dynamics of the underlying state and time change variables.\",\"PeriodicalId\":54088,\"journal\":{\"name\":\"International Journal of Financial Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Financial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s242478632350024x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s242478632350024x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

当标的资产价格由连续时间自回归移动平均(CARMA)过程驱动时,我们考虑期权定价问题,时间变化为Lévy从属或/和绝对连续的时间变化过程。利用正交多项式展开法,导出了期权价格的解析公式。我们的方法基于这样的观察,即CARMA过程属于多项式扩散类,时间变量和底层状态变量分别进入多项式展开。我们通过大量的数值实验证明了该方法的准确性。我们还研究了与控制潜在状态和时间变化变量动态的关键参数有关的价格敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical formulas for option prices under time-changed CARMA process
We consider the option pricing problem when the underlying asset price is driven by a continuous time autoregressive moving average (CARMA) process, time changed a Lévy subordinator or/and an absolutely continuous time change process. We derive the analytical formulas for the option prices by employing the orthogonal polynomial expansion method. Our method is based on the observation that the CARMA process belongs to the class of polynomial diffusion and the time variable and underlying state variables enter the polynomial expansion separately. We demonstrate the accuracy of the method through a number of numerical experiments. We also investigate the price sensitivities with respect to the key parameters that govern the dynamics of the underlying state and time change variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信