{"title":"生物科学的近似贝叶斯计算","authors":"Ritabrata Dutta","doi":"10.19080/BBOAJ.2018.07.555715","DOIUrl":null,"url":null,"abstract":"Approximate Bayesian computation (ABC) provides us a rigorous tool to perform parameter inference for models without an easily accessible likelihood function. Here we give a short introduction to ABC, focusing on applications in biological science. Furthermore, we introduce users to a Python suite implementing ABC algorithms, with optimal use of high performance computing facilities.","PeriodicalId":72412,"journal":{"name":"Biostatistics and biometrics open access journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Bayesian Computation for Biological Science\",\"authors\":\"Ritabrata Dutta\",\"doi\":\"10.19080/BBOAJ.2018.07.555715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Bayesian computation (ABC) provides us a rigorous tool to perform parameter inference for models without an easily accessible likelihood function. Here we give a short introduction to ABC, focusing on applications in biological science. Furthermore, we introduce users to a Python suite implementing ABC algorithms, with optimal use of high performance computing facilities.\",\"PeriodicalId\":72412,\"journal\":{\"name\":\"Biostatistics and biometrics open access journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and biometrics open access journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/BBOAJ.2018.07.555715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and biometrics open access journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/BBOAJ.2018.07.555715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate Bayesian Computation for Biological Science
Approximate Bayesian computation (ABC) provides us a rigorous tool to perform parameter inference for models without an easily accessible likelihood function. Here we give a short introduction to ABC, focusing on applications in biological science. Furthermore, we introduce users to a Python suite implementing ABC algorithms, with optimal use of high performance computing facilities.